275 research outputs found

    Teen smoking, field cancerization, and a "critical period" hypothesis for lung cancer susceptibility.

    Get PDF
    Cigarette smoking by children and adolescents continues to be prevalent, and this fact represents a major public health problem and challenge. Epidemiologic work has previously suggested that exposure of the lung to tobacco carcinogens at an early age may be an independent risk factor for lung cancer. Recent studies at the molecular and cellular levels are consistent with this, now suggesting that early exposure enhances DNA damage and is associated with the induction of DNA alterations in specific chromosomal regions. In this paper we hypothesize that adolescence, which is known to be the period of greatest development for the lung, may constitute a "critical period" in which tobacco carcinogens can induce fields of genetic alterations that make the early smoker more susceptible to the damaging effects of continued smoking. The fact that lung development differs by sex might also contribute to apparent gender differences in lung cancer susceptibility. Because this hypothesis has important implications for health policy and tobacco control, additional resources need to be devoted to its further evaluation. Targeted intervention in adolescent smoking may yield even greater reductions in lung cancer occurrence than otherwise anticipated

    Immune profiles and DNA methylation alterations related with non-muscle-invasive bladder cancer outcomes

    Get PDF
    Background: Non-muscle-invasive bladder cancer (NMIBC) patients receive frequent monitoring because ≥ 70% will have recurrent disease. However, screening is invasive, expensive, and associated with significant morbidity making bladder cancer the most expensive cancer to treat per capita. There is an urgent need to expand the understanding of markers related to recurrence and survival outcomes of NMIBC. Methods and results: We used the Illumina HumanMethylationEPIC array to measure peripheral blood DNA methylation profiles of NMIBC patients (N = 603) enrolled in a population-based cohort study in New Hampshire and applied cell type deconvolution to estimate immune cell-type proportions. Using Cox proportional hazard models, we identified that increasing CD4T and CD8T cell proportions were associated with a statistically significant decreased hazard of tumor recurrence or death (CD4T: HR = 0.98, 95% CI = 0.97–1.00; CD8T: HR = 0.97, 95% CI = 0.95–1.00), whereas increasing monocyte proportion and methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) were associated with the increased hazard of tumor recurrence or death (monocyte: HR = 1.04, 95% CI = 1.00–1.07; mdNLR: HR = 1.12, 95% CI = 1.04–1.20). Then, using an epigenome-wide association study (EWAS) approach adjusting for age, sex, smoking status, BCG treatment status, and immune cell profiles, we identified 2528 CpGs associated with the hazard of tumor recurrence or death (P \u3c 0.005). Among these CpGs, the 1572 were associated with an increased hazard and were significantly enriched in open sea regions; the 956 remaining CpGs were associated with a decreased hazard and were significantly enriched in enhancer regions and DNase hypersensitive sites. Conclusions: Our results expand on the knowledge of immune profiles and methylation alteration associated with NMIBC outcomes and represent a first step toward the development of DNA methylation-based biomarkers of tumor recurrence

    Lack of association of rare alleles in the <I>HRAS</I> variable number of tandem repeats (VNTR) region with adult glioma

    Get PDF
    HRAS rare alleles have been associated with the increased susceptibility to a variety of cancers. In the present study we examined the hypothesis that HRAS rare alleles are a risk factor for adult glioma in a population-based case-control study of adult glioma in six San Francisco Bay Area counties. We compared the prevalence of rare alleles in the variable number of tandem repeats region of HRAS in the germline DNA from 73 white adults who had gliomas with that of 65 controls. Overall, the prevalence of rare alleles in cases was not different from the prevalence of those in controls according to two definitions of rare alleles. We found that 25 of 73 (34%) of cases versus 25 of 65 (38%) of controls had at least one allele that was not 30, 46, 69, or 87 repeats; 4 of 73 (5%) of cases versus 6 of 65 (9%) of controls carried one or more alleles with 33, 39, 42, 53, 59, 63, 68, 105, or 114 repeats. The proportion of rare alleles was somewhat higher among subjects with anaplastic astrocytoma. Among women, cases were less likely than controls to have HRAS rare alleles, whereas among men, cases were slightly more likely to have HRAS rare alleles, but none of these results approach statistical significance. Our data do not suggest an excess of HRAS rare alleles among adult glioma cases

    Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling

    Get PDF
    DNA methylation microarrays can be employed to interrogate cell-type composition in complex tissues. Here, we expand reference-based deconvolution of blood DNA methylation to include 12 leukocyte subtypes (neutrophils, eosinophils, basophils, monocytes, naïve and memory B cells, naïve and memory CD4 + and CD8 + T cells, natural killer, and T regulatory cells). Including derived variables, our method provides 56 immune profile variables. The IDOL (IDentifying Optimal Libraries) algorithm was used to identify libraries for deconvolution of DNA methylation data for current and previous platforms. The accuracy of deconvolution estimates obtained using our enhanced libraries was validated using artificial mixtures and whole-blood DNA methylation with known cellular composition from flow cytometry. We applied our libraries to deconvolve cancer, aging, and autoimmune disease datasets. In conclusion, these libraries enable a detailed representation of immune-cell profiles in blood using only DNA and facilitate a standardized, thorough investigation of immune profiles in human health and disease
    corecore