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ABSTRACT 

Background:  Epigenetics is the study of heritable changes in gene function that cannot 

be explained by changes in DNA sequence. One of the most commonly studied 

epigenetic alterations is cytosine methylation, which is a well recognized mechanism of 

epigenetic gene silencing and often occurs at tumor suppressor gene loci in human 

cancer.  In order to understand methylation in normal tissue, we have collected 217 

normal tissue samples on 11 types of normal tissue and used the Illumina GoldenGate 

platform to assess methylation at 1505 loci associated with over 800 cancer-related 

genes. While model-based cluster analysis is often used to identify methylation 

subgroups in data, it is unclear how to cluster methylation data from arrays in a scalable 

and reliable manner.  

Results: We propose a novel model-based recursive-partitioning algorithm to navigate 

clusters in a beta mixture model.  We present simulations that show that the method is 

more reliable than competing nonparametric clustering approaches, and is at least as 

reliable as conventional mixture model methods. We also show that our proposed method 

is more computationally efficient than conventional mixture model approaches.  We 

demonstrate our method on the normal tissue samples and show that the clusters are 

associated with tissue type as well as age. 

Conclusions:  Our proposed recursively-partitioned mixture model is an effective and 

computationally efficient method for clustering methylation data. 
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BACKGROUND 

Epigenetics is the study of heritable changes in gene function that cannot be explained by 

changes in DNA sequence [1]. One of the most commonly studied epigenetic alterations 

is cytosine methylation, which occurs in the context of a CpG dinucleotide. 

Concentrations of  CpGs known as CpG islands, when sufficiently methylated, are 

associated with transcriptional gene silencing tantamount to “one hit” as part of 

Knudson’s two hit hypothesis of carcinogenesis [2].  DNA methylation associated gene 

silencing is a well recognized epigenetic mechanism that often occurs at tumor 

suppressor gene (TSG) loci in human cancer. Hundreds of reports of methylation induced 

silencing at TSGs in virtually all types of human cancer have been published [3, 4].  

While there has been a tremendous effort to characterize epigenetic alterations in 

cancer, surprisingly little work has been done in disease-free tissues. There is a basic 

need for epigenetic profiling of normal tissues to better understand the contribution of 

these profiles to tissue specificity, especially in the context of phenotypically important 

CpGs, where deregulation is associated with human diseases such as cancer. While 

efforts to characterize the methylation profiles of normal tissues in humans and mice 

have begun, and certain themes are slowly becoming apparent, relatively few reports 

have emerged [4-11]. Most CpGs or CpG regions have been found to have a bimodal 

distribution of methylation profiles, either hypo- or hypermethylated. Another theme is 

the disproportionate location of cell or tissue type dependent differentially methylated 

regions in non-CpG island sites [4, 8].  Furthermore, the Human Epigenome Project 

showed that the human major histocompatability loci have differential methylation across 

various human tissues, but that differential methylation does not necessarily lead to 
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differential expression [8]. It is therefore critical to first outline the basal-state of 

phenotypically important epigenetic marks that are known to contribute to cancer in order 

to have a background for comparison to other normal and diseased tissue. This approach 

is best suited to foster the discovery of epigenetic profiles that are associated with 

particular disease states or covariates that contribute to pathogenesis.    

Cluster analysis is often used to identify methylation subgroups in data [12, 13] 

and, in particular, Siegmund (2004) argues that model-based clustering techniques are 

often superior to nonparametric approaches [13].  Large-scale methylation arrays are now 

available for studying methylation genome-wide; the GoldenGate methylation platform 

from the manufacturer Illumina (San Diego, CA) simultaneously measures cytosine 

methylation at 1505 phenotypically-important loci associated with over 800 cancer-

related genes.  The result of the array is a sequence of “beta” values, one for each locus, 

calculated as the average of approximately 30 replicates (approximately 30 beads per site 

per sample) of the quantity max(M , 0)/(|U| + |M| + Q), where U is the fluorescent signal 

from an unmethylated allele on a single bead, M is that from a methylated allele, and Q is 

a constant chosen to ensure that the quantity is well-defined; an absolute value is used in 

the denominator of the formula to compensate for negative signals due to background 

subtraction.  Note that each beta value is an approximately continuous variable lying 

between zero and one, where zero represents an unmethylated locus and one represents a 

methylated locus.  As such, the beta value is appropriately modeled with a beta 

distribution.  A data set consisting of such sequences produces a high-dimensional data-

analysis problem which poses challenges for traditional clustering approaches.  In 

addition, analysis of heterogeneous tissue data can lead to a large number of clusters, as 
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we demonstrate below, which presents further challenges for clustering techniques.  For 

example, nonparametric approaches rely on a choice of metric, which may be difficult to 

justify in the context of high dimensions and numerous clusters.  On the other hand, in 

model-based clustering, multi-modality of the data likelihood may lead to numerical 

instability or difficulty in determining the best solution [14]. 

We propose a novel method for model-based clustering of data of the type 

produced by Illumina GoldenGate arrays.  Our method makes use of a beta mixture 

model [15]. Although one could use BIC (or similar quantities) to select the number of 

clusters in the data set, we propose a recursive-partitioning algorithm that provides the 

number of clusters and a reliable solution in a shorter amount of time than sequential 

attempts with different numbers of assumed clusters.  This is similar in spirit to the idea 

of recursive partitioning used in Hierarchical Ordered Partitioning and Collapsing Hybrid 

(HOPACH, [16]), in which clusters are recursively partitioned using a nonparametric 

algorithm such as PAM [17].  Our method is also an unsupervised variant of Hierarchical 

Mixtures of Experts [18], a fuzzy version of CART [19].  We also propose a method for 

reducing the number of loci considered in the analysis, and selecting the optimal number 

using an “augmented” BIC statistic.  We also present a simulation study comparing its 

properties to those of competitor methods.  Finally, we demonstrate the methodology on 

GoldenGate methylation array data obtained from 217 normal tissue samples. 

 

RESULTS 

Simulation 
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Table 1 displays the classification error and computation time resulting from our 

simulation study.  In both cases simulated, the mixture models outperformed the 

nonparametric methods in terms of classification error.  For Case I, based on normal 

tissue data and described below in the Methods section, the proposed recursive-

partitioned mixture model outperformed all other methods, including the sequentially-fit 

mixture models.  For Case II, based on artificial parameters representing extremes of 

mean and variability, both mixture models performed equally well.  In general, the 

mixture models had longer computation time than the nonparametric methods; however, 

we note that the mixture models were implemented as interpreted code in R, while the 

nonparametric methods were precompiled programs with R interfaces.  Note that the 

recursively-partitioned mixture model was anywhere from 3 to 8 times faster than the 

sequentially fit mixture model. 

For Case I, the median number of classes obtained for HOPACH with the “best” 

setting ranged from 22 (J=1000) to 36.5 (J=25), where J was the number of loci 

considered in the analysis.  For HOPACH with the “greedy” setting, the median number 

ranged from 4 (J=1000) to 7 (J=25), with the correct number 5 being estimated at J=500.  

In contrast, the mixture models estimated a median of 5 classes for all values of J.  In 

addition, the mixture models almost always obtained the correct number of classes.  For 

Case II, HOPACH with the “best” setting obtained median number of classes between 17 

and 24, HOPACH with the “greedy” setting obtained median number of classes between 

4 and 8, (4 classes at J=10).  For the two lower values of J, the mixture models obtained 2 

classes, and for the two higher values of J, the mixture models obtained the correct 
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number of classes, 4.  Thus, for the cases considered, the mixture models almost always 

found the correct number of classes if J was high enough.  

In the Methods section we propose an augmented BIC as a comparative measure 

of model fit for different numbers J of loci.  For Case I, the mixture models always 

minimized the augmented BIC at J=1000, while for Case II, the mixture models always 

minimized the augmented BIC at J=25.  For Case I, nearly all 1413 dimensions were at 

least somewhat informative; it is interesting to note that J was always minimized at its 

highest value for this case.  For Case II, the number of informative dimensions was J=20, 

so the minimum J was closest to the true number of informative markers among the J 

considered in this simulation.  In additional simulations that used a finer mesh of J, J was 

minimized at 20.  Similar results were obtained when the classes were less balanced (e.g. 

Case I with class probabilities respectively 0.15, 0.30, 0.2, 0.25, and 0.1). 

 

Normal Tissue 

We applied the recursively-partitioned mixture model algorithm to the normal tissue 

described below in the Methods section.   For this analysis, we attempted to split a node 

only if the weight assigned to the node was greater than 5.  The augBICJ  statistic, which 

we propose as a comparative measure of model fit for different numbers J of loci, was 

minimized at  J = 1413, and the algorithm found 23 classes, whose profiles [mean values 

calculated using (1)] are depicted in Figure 4.  All posterior class membership 

probabilities were indistinguishable from 0 or 1 within numerical error.  Table 2 displays 

the cross-classification between mixture model latent class and tissue sample type.  Blood 

samples were completely separated from other solid tissue samples.  In addition, adult 
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blood samples were completely separated from newborn blood samples obtained from 

Guthrie cards.  Placenta samples were also separated from other tissues aside from a 

single pleura sample.  For the most part, head and neck tissue and brain were separated 

from other samples, but were poorly distinguished between them.  These results were 

consistent with a Random Forests analysis [24], in which we found blood perfectly 

classified, low classification error for placenta, and some confusion among head and neck 

tissue and brain tissue.  

Using a permutation test with chi-square statistic, the P value for a hypothesis of 

no association between class and sample type was less than 0.0001.  Thus, our proposed 

method found clusters relevant to sample type.  In addition, a permutation test using a 

Kruskal-Wallis test statistic produced P<0.0001 for a hypothesis of no difference in mean 

age among the classes.  Interestingly, when the clustering and subsequent hypothesis test 

was restricted to blood, the P<0.0001 for a hypothesis of no difference in mean age 

among latent classes.  Among the two classes found among the adult liquid blood 

samples, age was significantly different between them (P<0.0039).  These results are 

consistent with known associations between age and methylation.  In the latter two 

analyses restricted to blood, we found no association between class and gender (P>0.45).   

We remark that although there is a temptation to interpret the final classes as 

being more alike if they were split later in the recursive partitioning process, the fact that 

some brain samples were classified early with blood but separated later in the process 

tends to cast suspicion on such interpretations.   In particular, there is a band of loci that 

show high methylation in the three classes at the top of Figure 3, indexed as 11100, 

11101, and 1111, corresponding to brain and head and neck tissues, but not in the five 
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class immediately below (starting with 1101), all corresponding to blood samples.  This 

band also occurs at the bottom of Figure 3, in classes such as 01010, which also represent 

brain and head and neck tissue.  Together with the simulations, this result suggests that 

the final classes are meaningful, but the intermediate node classes are not necessarily so.  

We also analyzed the normal tissue methylation data using HOPACH.  The 

greedy version of the algorithm produced only 4 classes.  The “best” version produced 9 

clusters, which are cross-classified with tissue type in Table 3 and with the latent classes 

obtained from our proposed method in Table 4.  As Table 4 shows, the classes found by 

our proposed method were, for the most part, subsets of the 9 classes found using 

HOPACH, with a few exceptions that involve minor disagreements in classification.  

While the apparent compactness of the HOPACH classification seems, at first glance, 

more attractive than the classification produced by our model-based method, we remark 

that is has a few subtle problems.  It has three singletons, clusters 6, 8, and 9, which could 

be grouped together with cluster 7 to comprise a class that entirely represents placental 

tissue.  While a similar criticism could be made of our proposed method with respect to 

classification of blood,  some of the classes have verifiable meaning; for example, the 

classes indexed 1100 and 1101 distinguish age among blood samples taken from adults.  

HOPACH classification also associates one head and neck tissue sample with blood, and 

two cervical samples with numerous other tissues in the 5
th

 class.  The 5
th

 class associates 

numerous tissue types, and comprises 6 different classes produced by our proposed 

method.  Table 4 shows the cross-classification of tissue type with these 6 classes for the 

subjects comprising the 5
th

 HOPACH class.  The classification correctly isolates two of 

three cervix samples, and has a tendency to distinguish pleura from lung samples.  Using 
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a permutation test with chi-square statistic, the P value for a hypothesis of no association 

between class and sample type in this subset was less than 0.0001, demonstrating that the 

classes produced by the mixture model have additional information with respect to tissue 

type.  In order to compare the predictive ability of the two classification schemes overall, 

we applied the Random Forest algorithm to indicator variables representing HOPACH 

clusters (using all 9 variables for every bootstrap) and to indicator variables representing 

our model-based classification (using all 23 variables for every bootstrap).  In the former 

case we obtained a misclassification error rate of 17.97%, and in the latter case a 

misclassification error rate of 18.43%, the difference being the misclassification of one 

less sample using the model-based method.  Employing the Random Forest algorithm in a 

similar manner to predict age, we obtained a mean-squared-residual of 190.1 for 

HOPACH and 164.8 for the model-based classification, with variance explained equal to 

80.6% and 83.2% respectively.  Thus, the model-based classification seems to offer 

modest improvements over HOPACH in ability to make biological distinctions. 

 

DISCUSSION 

Our proposed method is a model-based version of the HOPACH algorithm [16]:  we 

recursively use a beta-mixture model [15] to propose a split of an existing cluster, 

preserving the split only when it is judged on the basis of BIC to better fit the data.  

While more refined versions of BIC are available in this context [15], we have found that 

the simpler versions perform adequately.  We remark that the candidate clusters at each 

node are defined in a “fuzzy” manner, where each subject has the opportunity to be 

portioned out over multiple clusters.  This is a distinction between our method and 
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nonparametric methods such as HOPACH.  Siegmund et al. (2004) argue that model-

based clustering is preferred in this context over hierarchical clustering [13], a finding 

that bears out in our simulations.  One reason for the superior performance, at least in a 

high-dimensional context, is that the metric used to characterize the differences in 

nonparametric contexts may be relatively insensitive to differences in particular 

dimensions.   This may play a role in the apparent differences in classification of normal 

tissue between our proposed method and HOPACH. 

K-means have been used recently to cluster methylation outcomes (e.g. [12]).  

However, the work of van der Laan and Pollard (2003) seems to suggest that HOPACH 

may yield results that are superior to K-means.  In particular, with K-means it is difficult 

to know how many classes are inherent in the data without resampling-based methods 

such as the gap statistic [25], with implications for scalability.  Also, the “curse of 

dimensionality” would tend to degrade the performance of procedures such as K-means 

when there are a large number of clusters and the observed data is of high dimension.  In 

general, nonparametric methods such as the fanny algorithm [17] rely on tuning 

parameters that are difficult to optimize without resampling.  An additional problem with 

non-parametric procedures is that they typically consider only the first moment (means) 

of the underlying distributions, ignoring the second-moment (variance) which for DNA 

methylation as measured by the GoldenGate assay, may play a critical role in 

distinguishing tissues. 

We propose a dimension-reduction strategy which simply ranks candidate 

dimensions on the basis of some criterion such as variance, fits the top J dimensions in a 

mixture model, and employs an augmented version of BIC to compare model fit across 
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different values of J.  This is a departure from the penalized-likelihood methods of the 

kind described in [22], which would become computationally difficult for truly high-

dimensional data.  Our approach is similar in sprit to supervised principal components 

methods such as [26].  Interestingly, for the normal tissue data, all 1413 loci were found 

to be informative.  The implication is that methylation at even the least variable locus, 

COL6A1_P283_F, contains information about tissue type.  In fact, in box-plots showing 

the distribution of COL6A1_P283_F methylation (not planned for published article – see 

Supplementary Figure 1 provided for review), there was great heterogeneity in apparent 

distribution by tissue type, even though all methylation average beta values were less 

than 0.05.  This strongly suggests that the average beta measured by the GoldenGate 

assay is in fact an average of methylation status over different cell types. 

 

CONCLUSIONS 

In summary, our method appears to have good properties both respect to classification 

error and computation time.  It achieves these properties by combining the strengths of 

model-based and hierarchical methods, navigating the underlying clusters quickly 

through recursive partitioning, but doing so in a way that makes use of a reasonable 

probability model.  This model is also used to compare different dimensions J of input, 

thus refining the discriminative ability in a scalable manner.  Software is available from 

the authors upon request. 

 

METHODS 

Normal Tissue Data 

http://biostats.bepress.com/harvardbiostat/paper80



Our proposed method is motivated by methylation array data obtained for normal tissue 

data.  We extracted DNA from 217 normal tissue samples, modified with bisulfite, and 

processed them on the Illumina GoldenGate methylation platform.  Tissue were 

assembled by a collaborative, multi-institutional network of principal investigators 

conducting molecular epidemiologic studies of human cancer.  Participating institutions 

include the International Mesothelioma Program at Brigham and Women’s Hospital, 

Brown University, Dartmouth-Hitchcock Medical Center, University of California – San 

Francisco, Brain Tumor SPORE program, University of Massachusetts – Lowell, and the 

University of Minnesota.  Tissues were obtained through Institutional Review Board 

approved studies already underway at these institutions, or purchased from the National 

Disease Research Interchange (NDRI). A variety of normal tissue types were assembled:  

bladder (n=5), blood (n=85), brain (n=12), cervix (n=3), head and neck (n=11), kidney 

(n=6), lung (n=53), placenta (n=19), pleura (n=18), and small intestine (n=5).  All tissue 

samples were from adults except n=55 samples of Guthrie card derived blood samples 

from newborns.  Figure 1 illustrates the methylation pattern for all 217 subjects and 1413 

loci passing quality-assurance procedures (median detection p-value < 0.05). 

 

Recursive-partitioning for a Beta Mixture Model 

Let ),...( 1 iJii YY=Y be a vector of J continuous outcomes falling between 0 and 1, and let 

there be n such vectors.  We posit a mixture model having K classes, such that subject i 

belongs to class },...,1{ KCi ∈ , and conditional on class membership, each outcome is an 

independent Beta-distributed variable with parameters kjα  and kjβ  depending on both 

class k and dimension j.  That is,   
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which implies the following identities: 

 

1)()|( −+=== kjkjkjjkiij kCYE βααµ      (1) 

1)1)(1()|var( −++−== kjkjjkjkiij kCY βαµµ  

 

Under the assumption that kCi =  with probability kη , 1
1

=∑ =

K

k kη , and that methylation 

at each locus is independent conditional on class membership, the likelihood contribution 

from subject i is  
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−−− −==
K

k

J
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1 1
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With observed data D={y1,…, yn}, we then maximize the full-data log-likelihood, 

 

∑ =
==

n

i iif
1

)}(log{),,( yYηβαl ,      (2) 

 

with respect to the set of all parameters ),,( ηβα  to be estimated:  

),...,,,...,( 21111 KJJ αααα=α , ),...,,,...,( 21111 KJJ ββββ=β , and ),...,( 11 −= Kηηη .  This is 

easily achieved using an Expectation-Maximization (EM) algorithm [20].  Briefly, we 
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initialize the procedure with an Kn ×  matrix of weights )( ikw=W  whose rows sum to 

one.  The rows represent initial guesses at class membership probabilities for each 

subject.  For each k, we set ∑ =

−=
n

i ikk wn
1

1η and maximize the quantity 
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 (3) 

 

where Qk is constant with respect to parameters, to obtain the α and β parameters 

corresponding to class k.  We subsequently update the weights as follows:  
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iterating until ),,( ηβαl does not change.  The final weight ikw  represents the posterior 

probability that subject i belongs to class k, i.e. ),...,|( 1 niik kCPw YY== . As for most 

finite-mixture methods, we might decide on the number of classes K by fitting mixture 

models for a range of possible values of K, computing the BIC statistic 

 

∑ =
=−−+=

n

i ifKJKn
1

)}(log{2)12)(log(BIC yY     (4) 

 

and selecting the value of K corresponding to the minimum BIC.  In the context of beta 

mixture models, slightly modified alternatives to BIC are available [15].  The entire 
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operation has approximate complexity 2

max
nJK , where maxK is the maximum number of 

classes attempted.  The square term arises under the assumption that for a single model 

with K classes, the complexity will be of order nJK . 

Because likelihoods for model-based clustering algorithms can be multi-modal 

[14, 21], commercial mixture model software packages often use multiple starting values 

for fitting the model, and subsequently choose the estimates corresponding to the 

maximum likelihood.  However, careful choice of starting values can often minimize the 

effort [21, 22].  One option is to use hierarchical clustering to find K clusters (cutting the 

clustering dendrogram at the appropriate height), and constructing a weight matrix W 

corresponding to these clusters.  Another, similar, option is to use a fuzzy clustering 

algorithm such as the fanny algorithm [17] available in the R package cluster. 

We now propose a recursive method that, on average, has complexity nK , where 

K is the true number of classes.  Consider the following weighted-likelihood version of 

(1) 

 

∑ =
==

n

i iii f
1

)( )}(log{);,,( yYωηβα ωω
l .     (5) 

 

When 1≡iω for all i, (2) and (5) are equivalent.  When 10 << iω , subject i represents a 

partial or pseudo-subject, and when 0=iω , subject i is excluded entirely from 

consideration in the model.  The EM algorithm described above is easily modified by 

multiplying each ikw  by iω  in (3), where the interpretation is that the classes under 

consideration are only a partial set, and that subject i belongs to one of these classes only 
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with probability iω .  If we begin by fitting a 2-class model to the entire data set, the result 

is two sets of posterior weights representing the posterior probabilities of membership in 

each of the two classes.  Under the assumption that each of these classes can be further 

split, and that each subject belongs to the subsequent splits only with probability equal to 

the weight assigned to the un-split class, we apply the weighted-likelihood EM algorithm 

to obtain the two classes corresponding to the new split.   

To make this idea more precise, define a concatenation operation τ on a sequence 

of binary values ),...,( 1 Tqqr = , as ),,...,(),( 1 qqqqr T=τ .  This provides a natural 

notation for recursive binary partitioning, where longer sequences represent deeper levels 

of recursion.  The first two-class model, initialized by nonparametric cluster analysis, 

results in two sets of weights, 1

)0(

ii w=ω  and 2

)1(

ii w=ω .  For any sequence r, a mixture 

model can be attempted using the weighted EM algorithm with weights )(r

iω .  If the EM 

algorithm fails, then we terminate the recursion at that point, but if the EM algorithm 

succeeds, we can set new weights )(

1

)())0,(( r

i

r

i

r

i wωω τ = , )(

2

)())1,(( r

i

r

i

r

i wωω τ = , and continue the 

recursion.  Note that at each level of recursion, the weights become smaller; since a 

mixture model becomes unstable with small weights (corresponding to small numbers of 

pseudo-subjects), the recursion ultimately terminates completely at a set of leaf nodes 

corresponding to un-split classes.  We can stabilize this process by terminating the 

recursion if the sum of the weights is less than some pre-specified value (e.g. 5).  We can 

also terminate early if the split leads to a less parsimonious representation of the data.  To 

this end, we propose the following weighted versions of BIC: 
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where the first set of parameters, defining wtdBIC2, are obtained from the two-class 

mixture model and the second set of parameters, defining wtdBIC1, are obtained from a 

one-class model.  If wtdBIC2(r) is greater than wtdBIC1(r), we terminate the recursion at 

node r.  The worst-case complexity of this algorithm is Jnn )log( .  However, at deeper 

levels of recursion, two-class models will tend to fit poorly relative to single-class 

models, and most nodes will terminate before descending to the deepest levels.  We 

demonstrate empirically below that the proposed method tends to terminate with the 

number of leaf classes equal to the true number of classes, so that the average complexity 

is typically of approximate order )log(KnJK .  Furthermore, in the deeper classes, 

subjects whose weights are negligible can be dropped from the weighted EM algorithm, 

so that the complexity of the node-level fit at deeper levels is less than n.  

 

Dimension reduction 

Non-informative loci may lead to excessive noise in the solution.  Regularization 

methods may be used to constrain the degrees-of-freedom, leading to more precise 

solutions [22, 23].  However, in extremely high dimensions, it can also lead to increased 

computation time and curtail scalability.  We propose an alternative, where all L starting 

loci are ordered with respect to variance, and the J most variable loci are selected for 

inclusion in the recursive algorithm described above.  A final BIC value can be obtained 

using (4) by considering all leaf-level un-split classes as distinct clusters, with class 
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prevalence parameter vector ηobtained by summing the final weights )(r

iω and dividing 

by n.  However, this BIC is not comparable across different values of J.  Note that the 

exclusion of L – J  loci is equivalent to the assumption that all K classes have identical 

distributions for the excluded loci.  Thus, beta distributions can be fit to each excluded 

locus using maximum-likelihood, and the resulting parameter estimates included in a 

final BIC statistic.  Specifically, the likelihood for the full data 

)
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iiiLJiiJii YYYY YYY == + , where we assume the dimensions have been 

ordered by descending variance and iY
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 represents data excluded from the mixture model 
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The “augmented” BIC is now 
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where BICJ is the BIC computed for just the J selected loci.  The augmented BIC is now 

comparable across different values of J.  As we demonstrate below, augBICJ leads to 

sensible dimension reduction. 
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Simulation 

We conducted simulations to compare the properties of our proposed method with similar 

competing methods.  For our first case (Case I), each simulated data set consisted of 

n=100 subjects, each having 1413 continuous responses lying in the unit interval.  Each 

subject was a member of one of 5 classes, each class occurring with 0.2 probability.  The 

classes were defined by beta-distribution parameters for each of L=1413 methylation loci 

that were autosomal and passed quality-assurance, obtained by fitting a beta model on 

each locus to one of five data sets from our normal data:  adult blood, newborn blood, 

placenta, lung/pleura, and everything else.  Figure 2A illustrates a typical data set 

generated from these parameters.  For each data set, we conduct 5 analyses, each using 

the J most variable loci, }1000,500,50,25{∈J .  The first analysis used hierarchical 

clustering, implemented using hclust in the R cluster package, with Euclidean metric and 

average linkage, and assigned 5 classes by cutting the resulting dendrogram at the 

appropriate height using the cutree function in the same package.  The second analysis 

used HOPACH (R hopach package) to select the “best” classes as defined in the function 

settings.  The third analysis used HOPACH with classes obtained by the “greedy” version 

of the algorithm.  The fourth analysis fit 6 sequential mixture models ( 61 ≤≤ K ), each 

initialized two different ways (hierarchical clustering and the fanny algorithm), selecting 

the value of K producing the lowest BIC.  The fifth analysis was an application of our 

proposed method.  In the latter two types of analysis, we recorded the value of J that 

produced the best augmented BIC.   

For our second case (Case II), which represented a lower-dimensional setting 

(L=200) with greater variation in variance of individual beta distributions, we considered 
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100 subjects from 4 classes, described as follows.  Five sets of 10 “informative” beta 

parameters were drawn randomly at the beginning of the simulation study:  

)10,10(~1 Gammaa j , )10,10(~1 Gammab j ; )10,400(~2 Gammaa j , 

)10,100(~2 Gammab j ; )10,100(~3 Gammaa j , )10,400(~3 Gammab j ; and 

)1,100(~4 Gammaa j , )1,250(~4 Gammab j .  These were used to construct four classes of 

20 informative dimensions:  ),( 121 aaα = , ),( 422 aaα = , ),( 131 aaα = , ),( 431 aaα = , where 

)( ljl a=a , and similarly for the kβ  parameters with )( ljl b=b .  Each such 20-

dimensional parameter was augmented with a set of 180 “noninformative” parameters, 

constructed as 60 copies of the vector (100,1,50) for kα and 60 copies of the vector 

(1,100,50) for kβ .  The class probabilities were respectively 0.2, 0.3, 0.2, and 0.3.   

Although the pattern corresponding to this collection of parameters may be difficult to 

visualize at first glance, Figure 2B shows a typical data set generated under these 

conditions, and reveals a small set of informative markers, some having distinctions in 

mean and others in variability.  Similar analyses were conducted for this simulation, 

except with }50,25,10,5{∈J , and 4 classes assumed for hierarchical clustering. 

Misclassification error was assessed for all simulated data sets and analyses.  

Each estimated class was matched to true class by minimizing the distance between the J 

means calculated according to (1).  When the number of estimated classes was greater 

than the true number, multiple estimated classes were assigned to a single matching true 

class, thus generating no misclassification error when the estimated class merely 

partitioned the true class.  When the number of estimated classes was fewer than the true 

number, subjects within true classes that failed to match to an estimated class were 
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considered misclassified.  In the latter case, coarsening of the true classes would lead to 

the smaller absorbed class being judged as misclassified.  In the Results section below, 

we show that HOPACH tends to overestimate the number of classes for the cases we 

considered, so our strategy, which favors inappropriate partitioning over inappropriate 

coarsening, is conservative with respect to comparison with HOPACH in this set of 

simulations. 
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TABLES 

 

Table 1.  Classification error and computation time for various clustering methods 

applied to simulated data. 

 
Classification 
Error J HC HOPACH(1) HOPACH(2) MM(1-6) RPMM 

25 33.2 12.5 18.5 12.6 4.6 

50 32.5 7.4 13.6 7.1 0.4 

500 33.9 10.4 14.1 1.9 0.1 
Case 1 

1000 34.0 15.6 16.9 1.7 0.0 
       

 J HC HOPACH(1) HOPACH(2) MM(1-6) RPMM 

5 60.6 65.7 66.7 60.6 60.6 

10 59.2 67.2 67.9 60.1 59.6 

25 29.2 5.0 8.4 0.0 0.0 
Case 2 

50 29.1 4.0 7.9 0.2 0.0 

 
Computation 
Time (s) J HC HOPACH(1) HOPACH(2) MM(1-6) RPMM 

25 0.01 4.95 1.57 46.94 12.29 

50 0.01 4.26 1.50 59.56 15.41 

500 0.06 4.36 1.48 505.70 118.92 
Case 1 

1000 0.12 3.84 1.60 995.57 223.86 
       

  J HC HOPACH(1) HOPACH(2) MM(1-6) RPMM 

5 0.00 3.33 1.35 40.83 5.09 

10 0.00 2.76 1.32 63.77 8.44 

25 0.01 3.95 1.44 29.69 9.55 
Case 2 

50 0.01 3.33 1.36 45.38 12.92 

 

HC = Hierarchical clustering 

HOPACH(1) = HOPACH with ‘best’ number of classes 

HOPACH(2) = HOPACH with ‘greedy’ number of classes 

MM(1-6) = Beta mixture model fitting 1-6 classes sequentially 

RPMM = Recursively partitioned mixture model 

J = Number of loci considered in analysis 
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Table 2.  Cross-classification of sample type with latent classes obtained from proposed 

method 

  

Class b
la

d
d
e
r
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d
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la

c
e
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p
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ra

s
m

 i
n
te

s
ti
n
e

T
o
ta

l

000 3 2 12 8 3 28

0010 19 5 24

0011 20 2 1 23

0100 2 2 1 4 2 2 1 14

01010 1 4 5

0101100 3 3

0101101 3 3

010111 2 2

01100 1 1 2

01101 5 5

0111 13 13

1000 3 3

100100 2 2

100101 4 4

1001100 3 3

1001101 4 4

100111 5 5

101 34 34

1100 18 18

1101 12 12

11100 5 5

11101 3 3

1111 1 1 2

Total 5 30 55 12 3 11 6 53 19 18 5 217  
 

Classes are labeled with the sequence vector representing the terminal node from which 

the class was derived. 
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Table 3.  Cross-classification of sample type with clusters obtained from HOPACH 

 

Class b
la

d
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r
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d
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s
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T
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1 30 1 31

2 55 55

3 10 10

4 2 1 10 13

5 5 2 6 53 18 5 89

6 1 1

7 16 16

8 1 1

9 1 1

Total 5 30 55 12 3 11 6 53 19 18 5 217  
 

 

Table 4.  Cross-classification of latent classes obtained latent classes obtained from 

proposed method with clusters obtained from HOPACH 

 
Class 1 2 3 4 5 6 7 8 9 Total

000 28 28

0010 24 24

0011 23 23

0100 2 12 14

01010 5 5

0101100 3 3

0101101 3 3

010111 1 1 2

01100 1 1 2

01101 4 1 5

0111 12 1 13

1000 3 3

100100 2 2

100101 4 4

1001100 3 3

1001101 4 4

100111 5 5

101 34 34

1100 18 18

1101 12 12

11100 5 5

11101 3 3

1111 1 1 2

Total 31 55 10 13 89 1 16 1 1 217  
 

Rows represent classes from proposed method, labeled with the sequence vector 

representing the terminal node from which the class was derived.  Columns represent 

clusters from HOPACH. 
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Table 5.  Cross-classification of sample type with latent classes obtained from proposed 

method among subjects within the 5
th

 class obtained by HOPACH 

 

Class b
la
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s
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n
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s
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n
e

T
o
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l

000 3 2 12 8 3 28

0010 19 5 24

0011 20 2 1 23

0100 2 1 4 2 2 1 12

010111 1 1

01100 1 1

Total 5 2 6 53 18 5 89  
 

Classes are labeled with the sequence vector representing the terminal node from which 

the class was derived. 
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FIGURES 

 

Figure 1.  Unadjusted Average Beta values obtained from Illumina GoldenGate 

methylation platform for 1413 tumor suppressor loci on 217 normal tissue 

samples. 

 
Red = 1.0, black = 0.5, green = 0.0.  Autosomal chromosomes are grouped to aid 

visualization.  For each chromosome group, loci are ordered by their position in a 

dendrogram produced by hierarchical clustering.  Similarly, within tissue sample groups, 

samples are ordered by their position in a hierarchical clustering dendrogram.   
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Figure 2.   Examples of simulated data 

 

 

A.  Typical data set produced  in Case I 

 

B. Typical data set produced in Case II 

 
 

 

Red=1.0, black = 0.5, green = 0.0.  True classes indicated and separated by yellow 

dividing line.  Height of region indicates the relative number of subjects in each class. 
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Figure 3.  Profiles of latent classes among normal tissue samples. 

 

 
Average value (equation 1) depicted by color:  red=1.0, black = 0.5, green = 0.0.  Classes 

are separated by yellow dividing line, with height indicating the relative proportion of 

subjects within each class.  Loci are ordered by their position in a dendrogram obtained 

via hierarchical clustering. 
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Figure 4.   Distribution of DNA methylation average beta values by tissue type at least 

variable locus. 
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