62 research outputs found

    ABCA1 agonist peptides for the treatment of disease.

    No full text
    Purpose of reviewThe review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux.Recent findingsSmall α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. These studies have identified structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia, which may have implications for the design of other HDL mimetic peptides.SummaryABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease

    Apolipoprotein A-I Milano

    No full text

    Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    No full text
    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic

    Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL <i>In Vitro</i>

    No full text
    <div><p>Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI <i>in-vitro</i>. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to <i>de novo</i> formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles <i>in-vitro</i>. These mechanisms are potentially anti-atherogenic.</p></div
    corecore