199 research outputs found
Multipoint identity-by-descent computations for single-point polymorphism and microsatellite maps
We used the LOKI software to generate multipoint identity-by-descent matrices for a microsatellite map (with 31 markers) and two single-nucleotide polymorphism (SNP) maps to examine information content across chromosome 7 in the Collaborative Study on the Genetics of Alcoholism dataset. Despite the lower information provided by a single SNP, SNP maps overall had higher and more uniform information content across the chromosome. The Affymetrix map (578 SNPs) and the Illumina map (271 SNPs) provided almost identical information. However, increased information has a computational cost: SNP maps require 100 times as many iterations as microsatellites to produce stable estimates
The efficacy of short tandem repeat polymorphisms versus single-nucleotide polymorphisms for resolving population structure
Accurately resolving population structure in a sample is important for both linkage and association studies. In this study we investigated the power of single-nucleotide polymorphisms (SNPs) in detecting population structure in a sample of 286 unrelated individuals. We varied the number of SNPs to determine how many are required to approach the degree of resolution obtained with the Collaborative Study on the Genetics of Alcoholism (COGA) short tandem repeat polymorphisms (STRPs). In addition, we selected SNPs with varying minor allele frequencies (MAFs) to determine whether low or high frequency SNPs are more efficient in resolving population structure. We conclude that a set of at least 100 evenly spaced SNPs with MAFs of 40–50% is required to resolve population structure in this dataset. If SNPs with lower MAFs are used, then more than 250 SNPs may be required to obtain reliable results
Microsatellites versus single-nucleotide polymorphisms in linkage analysis for quantitative and qualitative measures
BACKGROUND: Genetic maps based on single-nucleotide polymorphisms (SNP) are increasingly being used as an alternative to microsatellite maps. This study compares linkage results for both types of maps for a neurophysiology phenotype and for an alcohol dependence phenotype. Our analysis used two SNP maps on the Illumina and Affymetrix platforms. We also considered the effect of high linkage disequilibrium (LD) in regions near the linkage peaks by analysing a "sparse" SNP map obtained by dropping some markers in high LD with other markers in those regions. RESULTS: The neurophysiology phenotype at the main linkage peak near 130 MB gave LOD scores of 2.76, 2.53, 3.22, and 2.68 for the microsatellite, Affymetrix, Illumina, and Illumina-sparse maps, respectively. The alcohol dependence phenotype at the main linkage peak near 101 MB gave LOD scores of 3.09, 3.69, 4.08, and 4.11 for the microsatellite, Affymetrix, Illumina, and Illumina-sparse maps, respectively. CONCLUSION: The linkage results were stronger overall for SNPs than for microsatellites for both phenotypes. However, LOD scores may be artificially elevated in regions of high LD. Our analysis indicates that appropriately thinning a SNP map in regions of high LD should give more accurate LOD scores. These results suggest that SNPs can be an efficient substitute for microsatellites for linkage analysis of both quantitative and qualitative phenotypes
Alzheimer\u27s disease alters oligodendrocytic glycolytic and ketolytic gene expression
INTRODUCTION: Sporadic Alzheimer\u27s disease (AD) is strongly correlated with impaired brain glucose metabolism, which may affect AD onset and progression. Ketolysis has been suggested as an alternative pathway to fuel the brain.
METHODS: RNA-seq profiles of post mortem AD brains were used to determine whether dysfunctional AD brain metabolism can be determined by impairments in glycolytic and ketolytic gene expression. Data were obtained from the Knight Alzheimer\u27s Disease Research Center (62 cases; 13 controls), Mount Sinai Brain Bank (110 cases; 44 controls), and the Mayo Clinic Brain Bank (80 cases; 76 controls), and were normalized to cell type: astrocytes, microglia, neurons, oligodendrocytes.
RESULTS: In oligodendrocytes, both glycolytic and ketolytic pathways were significantly impaired in AD brains. Ketolytic gene expression was not significantly altered in neurons, astrocytes, and microglia.
DISCUSSION: Oligodendrocytes may contribute to brain hypometabolism observed in AD. These results are suggestive of a potential link between hypometabolism and dysmyelination in disease physiology. Additionally, ketones may be therapeutic in AD due to their ability to fuel neurons despite impaired glycolytic metabolism
CSF Protein Changes Associated with Hippocampal Sclerosis Risk Gene Variants Highlight Impact of \u3cem\u3eGRN\u3c/em\u3e/PGRN
Objective—Hippocampal sclerosis of aging (HS-Aging) is a common cause of dementia in older adults. We tested the variability in cerebrospinal fluid (CSF) proteins associated with previously identified HS-Aging risk single nucleotide polymorphisms (SNPs).
Methods—Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n=237) data, combining both multiplexed proteomics CSF and genotype data, were used to assess the association between CSF analytes and risk SNPs in four genes (SNPs): GRN (rs5848), TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). For controls, non-HS-Aging SNPs in APOE (rs429358/rs7412) and MAPT (rs8070723) were also analyzed against Aβ1-42 and total tau CSF analytes.
Results—The GRN risk SNP (rs5848) status correlated with variation in CSF proteins, with the risk allele (T) associated with increased levels of AXL Receptor Tyrosine Kinase (AXL), TNF-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3), Vascular Cell Adhesion Molecule-1 (VCAM-1) and clusterin (CLU) (all p \u3c 0.05 after Bonferroni correction). The TRAIL-R3 correlation was significant in meta-analysis with an additional dataset (p=5.05×10−5). Further, the rs5848 SNP status was associated with increased CSF tau protein – a marker of neurodegeneration (p=0.015). These data are remarkable since this GRN SNP has been found to be a risk factor for multiple types of dementia-related brain pathologies
Genome-Wide Association Study for Variants That Modulate Relationships Between Cerebrospinal Fluid Amyloid-Beta 42, Tau, and P-Tau Levels
Background: A relationship quantitative trait locus exists when the correlation between multiple traits varies by genotype for that locus. Relationship quantitative trait loci (rQTL) are often involved in gene-by-gene (G×G) interactions or gene-by-environmental interactions, making them a powerful tool for detecting G×G.
Methods: We performed genome-wide association studies to identify rQTL between tau and Aβ42 and ptau and Aβ42 with over 3000 individuals using age, gender, series, APOE ε2, APOE ε4, and two principal components for population structure as covariates. Each significant rQTL was separately screened for interactions with other loci for each trait in the rQTL model. Parametric bootstrapping was used to assess significance.
Results: We found four significant tau/Aβ42 rQTL from three unique locations and six ptau/Aβ42 rQTL from five unique locations. G×G screens with these rQTL produced four significant G×G interactions (one Aβ42, two ptau, and one tau) with four rQTL where each second locus was from a unique location. On follow-up, rs1036819 and rs74025622 were associated with Alzheimer’s disease (AD) case/control status; rs15205 and rs79099429 were associated with rate of decline.
Conclusions: The two most significant rQTL (rs8027714 and rs1036819) for ptau/Aβ42 are on different chromosomes and both are strong hits for pelvic organ prolapse. While diseases of the nervous system can cause pelvic organ prolapse, it is unlikely related to the ptau/Aβ42 relationship but may suggest that these two loci share a pathway. In addition to a ptau/Aβ42 rQTL and association with AD case/control status, rs1036819 is a strong rQTL for case/control status/Aβ42 and for tau/Aβ42. It resides in the ZFAT gene, which is related to autoimmune thyroid disease. For tau, rs9817620 interacts with the tau/Aβ42 rQTL rs74025622. It is in the CHL1 gene, which is a neural cell adhesion molecule and may be involved in signal transduction pathways. CHL1 is related to BACE1, which is a β-secretase enzyme that initiates production of the β-amyloid peptide involved in AD and is a primary drug target. Overall, there are numerous loci that affect the relationship between these important AD endophenotypes and some are due to interactions with other loci. Some affect the risk of AD and/or rate of progression
Assembly of 809 whole mitochondrial genomes with clinical, imaging, and fluid biomarker phenotyping
INTRODUCTION:
Mitochondrial genetics are an important but largely neglected area of research in Alzheimer's disease. A major impediment is the lack of data sets.
METHODS:
We used an innovative, rigorous approach, combining several existing tools with our own, to accurately assemble and call variants in 809 whole mitochondrial genomes.
RESULTS:
To help address this impediment, we prepared a data set that consists of 809 complete and annotated mitochondrial genomes with samples from the Alzheimer's Disease Neuroimaging Initiative. These whole mitochondrial genomes include rich phenotyping, such as clinical, fluid biomarker, and imaging data, all of which is available through the Alzheimer's Disease Neuroimaging Initiative website. Genomes are cleaned, annotated, and prepared for analysis.
DISCUSSION:
These data provide an important resource for investigating the impact of mitochondrial genetic variation on risk for Alzheimer's disease and other phenotypes that have been measured in the Alzheimer's Disease Neuroimaging Initiative samples
An analysis of identical single-nucleotide polymorphisms genotyped by two different platforms
The overlap of 94 single-nucleotide polymorphisms (SNP) among the 4,720 and 11,120 SNPs contained in the linkage panels of Illumina and Affymetrix, respectively, allows an assessment of the discrepancy rate produced by these two platforms. Although the no-call rate for the Affymetrix platform is approximately 8.6 times greater than for the Illumina platform, when both platforms make a genotypic call, the agreement is an impressive 99.85%. To determine if disputed genotypes can be resolved without sequencing, we studied recombination in the region of the discrepancy for the most discrepant SNP rs958883 (typed by Illumina) and tsc02060848 (typed by Affymetrix). We find that the number of inferred recombinants is substantially higher for the Affymetrix genotypes compared to the Illumina genotypes. We illustrate this with pedigree 10043, in which 3 of 7 versus 0 of 7 offspring must be double recombinants using the genotypes from the Affymetrix and the Illumina platforms, respectively. Of the 36 SNPs with one or more discrepancies, we identified a subset that appears to cluster in families. Some of this clustering may be due to the presence of a second segregating SNP that obliterates a XbaI site (the restriction enzyme used in the Affymetrix platform), resulting in a fragment too long (>1,000 bp) to be amplified
Common DNA Variants Accurately Rank an Individual of Extreme Height
Polygenic scores (or genetic risk scores) quantify the aggregate of small effects from many common genetic loci that have been associated with a trait through genome-wide association. Polygenic scores were first used successfully in schizophrenia and have since been applied to multiple phenotypes including multiple sclerosis, rheumatoid arthritis, and height. Because human height is an easily-measured and complex polygenic trait, polygenic height scores provide exciting insights into the predictability of aggregate common variant effect on the phenotype. Shawn Bradley is an extremely tall former professional basketball player from Brigham Young University and the National Basketball Association (NBA), measuring 2.29 meters (7′6″, 99.99999th percentile for height) tall, with no known medical conditions. Here, we present a case where a rare combination of common SNPs in one individual results in an extremely high polygenic height score that is correlated with an extreme phenotype. While polygenic scores are not clinically significant in the average case, our findings suggest that for extreme phenotypes, polygenic scores may be more successful for the prediction of individuals
Pairwise Correlation Analysis of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset Reveals Significant Feature Correlation
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the extent to which this issue might impact large scale analyses using these data. We found that 93.457% of biomarkers, 92.549% of the gene expression values, and 100% of MRI features were strongly correlated with at least one other feature in ADNI based on our Bonferroni corrected α (p-value ≤ 1.40754 × 10−13). We provide a comprehensive mapping of all ADNI biomarkers to highly correlated features within the dataset. Additionally, we show that significant correlation within the ADNI dataset should be resolved before performing bulk data analyses, and we provide recommendations to address these issues. We anticipate that these recommendations and resources will help guide researchers utilizing the ADNI dataset to increase model performance and reduce the cost and complexity of their analyses
- …