405 research outputs found

    Time-Lapse Geophysical Investigations over a Simulated Urban Clandestine Grave

    Get PDF
    A simulated clandestine shallow grave was created within a heterogeneous, made-ground, urban environment where a clothed, plastic resin, human skeleton, animal products, and physiologic saline were placed in anatomically correct positions and re-covered to ground level. A series of repeat (time-lapse), near-surface geophysical surveys were undertaken: (1) prior to burial (to act as control), (2) 1 month, and (3) 3 months post-burial. A range of different geophysical techniques was employed including: bulk ground resistivity and conductivity, fluxgate gradiometry and high-frequency ground penetrating radar (GPR), soil magnetic susceptibility, electrical resistivity tomography (ERT), and self potential (SP). Bulk ground resistivity and SP proved optimal for initial grave location whilst ERT profiles and GPR horizontal ‘‘time-slices’’ showed the best spatial resolutions. Research suggests that in urban made ground environments, initial resistivity surveys be collected before GPR and ERT follow-up surveys are collected over the identified geophysical anomalies

    Megamaser Disks in Active Galactic Nuclei

    Get PDF
    Recent spectroscopic and VLBI-imaging observations of bright extragalactic water maser sources have revealed that the megamaser emission often originates in thin circumnuclear disks near the centers of active galactic nuclei (AGNs). Using general radiative and kinematic considerations and taking account of the observed flux variability, we argue that the maser emission regions are clumpy, a conclusion that is independent of the detailed mechanism (X-ray heating, shocks, etc.) driving the collisionally pumped masers. We examine scenarios in which the clumps represent discrete gas condensations (i.e., clouds) and do not merely correspond to velocity irregularities in the disk. We show that even two clouds that overlap within the velocity coherence length along the line of sight could account (through self-amplification) for the entire maser flux of a high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and we suggest that cloud self-amplification likely contributes also to the flux of the background-amplifying ``systemic'' features in these objects. Analogous interpretations have previously been proposed for water maser sources in Galactic star-forming regions. We argue that this picture provides a natural explanation of the time-variability characteristics of extragalactic megamaser sources and of their apparent association with Seyfert 2-like galaxies. We also show that the requisite cloud space densities and internal densities are consistent with the typical values of nuclear (broad emission-line region-type) clouds.Comment: 55 pages, 7 figures, AASTeX4.0, to appear in The Astrophysical Journal (1999 March 1 issue

    Long-term Geophysical Monitoring of Simulated Clandestine Graves using Electrical and Ground Penetrating Radar Methods: 4–6 Years After Burial

    Get PDF
    This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated “wrapped,”“naked,” and “control” burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases

    Hercules X-1: Empirical Models of UV Emission Lines

    Get PDF
    The UV emission lines of Hercules X-1, resolved with the HST GHRS and STIS, can be divided into broad (FWHM 750 km/s) and narrow (FWHM 150 km/s) components. The broad lines can be unambiguously identified with emission from an accretion disk which rotates prograde with the orbit. The narrow lines, previously identified with the X-ray illuminated atmosphere of the companion star, are blueshifted at both phi=0.2 and phi=0.8 and the line flux at phi=0.2 is 0.2 of the flux at phi=0.8. Line ratio diagnostics show that the density of the narrow line region is log n=13.4+/-0.2 and the temperature is T=1.0+/-0.2x10^5 K. The symmetry of the eclipse ingress suggests that the line emission on the surface of the disk is left-right symmetric relative to the orbit. Model fits to the O V, Si IV, and He II line profiles agree with this result, but fits to the N V lines suggest that the receding side of the disk is brighter. We note that there are narrow absorption components in the N V lines with blueshifts of 500 km/s.Comment: To be published in the Astrophysical Journa

    Using remote sensing to forecast forage quality for cattle in the dry savannas of northeast Australia

    Get PDF
    In the dry savannas of northeast Australia, forage quality is just as important for cattle production as forage quantity. The seasonal trend of forage quality is broadly predictable by land managers, but it is more difficult to predict the point when quality—which depends on local climate, management, and pasture condition—falls below the requirement for animal maintenance. In this study we use statistical modelling to forecast how forage quality might change at the crucial time of year, i.e., as the summer wet season transitions to the dry winter. We do this with the aid of historical information associated with a long-term cattle-grazing trial in the dry savannas. We combined multiple years of two measures of forage quality (dietary crude protein and in vivo dry-matter digestibility; respectively DCP and DMD) and ground cover information (specifically the ratio of ‘green grass’ cover to ‘dead (i.e., non-photosynthetic) grass’ cover, derived from an archive of Landsat satellite imagery) into a linear mixed model that explicitly considered the correlations with time and between variables. DCP and DMD were estimated by near-infrared spectroscopy of fresh faecal samples; values did not have to be temporally coincident with the satellite imagery. With the end of May considered a nominal decision-point, we forecast monthly averages of forage quality for June to August, over a 12-year period at the study site. Over all months and all years, the median absolute error of the forecasts was DCP = 0.86%, and DMD = 0.95%. The remote sensing information served as a correlated, oft-sampled covariate that helped to guide the forecasts of forage quality. We propose summarising the forecasts (and their uncertainty) as a near-real-time graphical tool for decision-support. Such a product could potentially benefit cattle-grazing enterprises in the northeast of Australia, enabling more timely management of herds through the dry season

    Determining geophysical responses from burials in graveyards and cemeteries

    Get PDF
    Graveyards and cemeteries around the world are increasingly designated as full. Therefore, there is a requirement to identify vacant spaces for new burials or to identify existing ones to exhume and then reinter if necessary. Geophysical methods offer a potentially noninvasive target detection solution; however, there has been limited research to identify optimal geophysical detection methods against burial age. We have collected multifrequency (225–900 MHz) ground-penetrating radar (GPR), electrical resistivity, and magnetic susceptibility surface data over known graves with different burial ages and soil types in three UK church graveyards. Results indicate that progressively older burials are more difficult to detect, but this decrease is not linear and is site specific. Medium- to high-frequency GPR and magnetic susceptibility was optimal in clay-rich soils, medium- to high-frequency GPR and electrical resistivity in sandy soils, and electrical resistivity and low-frequency GPR in coarse sand and pebbly soils, respectively. A multigeophysical technique approach should be used by survey practitioners where grave locations are not known to maximize target detection success. Grave soil and grave cuts are important grave position indicators. Grave headstones were not always located where burials were located. We have determined the value of these techniques in grave detection and could potentially date burials from their geophysical responses

    Varied effects of algal symbionts on transcription factor NF-ÎșB in a sea anemone and a coral: possible roles in symbiosis and thermotolerance

    Full text link
    Many cnidarians, including the reef-building corals, undergo symbiotic mutualisms with photosynthetic dinoflagellate algae of the family Symbiodiniaceae. These partnerships are sensitive to temperature extremes, which cause symbiont loss and increased coral mortality. Previous studies have implicated host immunity and specifically immunity transcription factor NF-ÎșB as having a role in the maintenance of the cnidarian-algal symbiosis. Here we have further investigated a possible role for NF-ÎșB in establishment and loss of symbiosis in various strains of the anemone Exaiptasia (Aiptasia) and in the coral Pocillopora damicornis. Our results show that NF-ÎșB expression is reduced in Aiptasia larvae and adults that host certain algae strains. Treatment of Aiptasia larvae with a known symbiosis-promoting cytokine, transforming growth factor ÎČ, also led to decreased NF-ÎșB expression. We also show that aposymbiotic Aiptasia (with high NF-ÎșB expression) have increased survival following infection with the pathogenic bacterium Serratia marcescens as compared to symbiotic Aiptasia (low NF-ÎșB expression). Furthermore, a P. damicornis coral colony hosting Durusdinium spp. (formerly clade D) symbionts had higher basal NF-ÎșB expression and decreased heat-induced bleaching as compared to two individuals hosting Cladocopium spp. (formerly clade C) symbionts. Lastly, genome-wide gene expression profiling and genomic promoter analysis identified putative NF-ÎșB target genes that may be involved in thermal bleaching, symbiont maintenance, and/or immune protection in P. damicornis. Our results provide further support for the hypothesis that modulation of NF-ÎșB and immunity plays a role in some, but perhaps not all, cnidarian-Symbiodiniaceae partnerships as well as in resistance to pathogens and bleaching.Accepted manuscrip
    • 

    corecore