1,330 research outputs found

    Uveal melanoma cells use ameboid and mesenchymal mechanisms of cell motility crossing the endothelium

    Get PDF
    Uveal melanomas (UMs) are malignant cancers arising from the pigmented layers of the eye. UM cells spread through the bloodstream, and circulating UM cells are detectable in patients before metastases appear. Extravasation of UM cells is necessary for formation of metastases, and transendothelial migration (TEM) is a key step in extravasation. UM cells execute TEM via a stepwise process involving the actin-based processes of ameboid blebbing and mesenchymal lamellipodial protrusion. UM cancers are driven by oncogenic mutations that activate Gαq/11, and this activates TRIO, a guanine nucleotide exchange factor for RhoA and Rac1. We found that pharmacologic inhibition of Gαq/11 in UM cells reduced TEM. Inhibition of the RhoA pathway blocked amoeboid motility but led to enhanced TEM; in contrast, inhibition of the Rac1 pathway decreased mesenchymal motility and reduced TEM. Inhibition of Arp2/3 complex allowed cells to transmigrate without intercalation, a direct mechanism similar to the one often displayed by immune cells. BAP1-deficient (+/-) UM subclones displayed motility behavior and increased levels of TEM, similar to the effects of RhoA inhibitors. We conclude that RhoA and Rac1 signaling pathways, downstream of oncogenic Gαq/11, combine with pathways regulated by BAP1 to control the motility and transmigration of UM cells

    RIPK3-Dependent Recruitment of Low-Inflammatory Myeloid Cells Does Not Protect from Systemic Salmonella Infection

    Get PDF
    ABSTRACT Regulated macrophage death has emerged as an important mechanism to defend against intracellular pathogens. However, the importance and consequences of macrophage death during bacterial infection are poorly resolved. This is especially true for the recently described RIPK3-dependent lytic cell death, termed necroptosis. Salmonella enterica serovar Typhimurium is an intracellular pathogen that precisely regulates virulence expression within macrophages to evade and manipulate immune responses, which is a key factor in its ability to cause severe systemic infections. We combined genetic and pharmacological approaches to examine the importance of RIPK3 for S. Typhimurium-induced macrophage death using conditions that recapitulate bacterial gene expression during systemic infection in vivo. Our findings indicate that noninvasive S. Typhimurium does not naturally induce macrophage necroptosis but does so in the presence of pan-caspase inhibition. Moreover, our data suggest that RIPK3 induction (following caspase inhibition) does not impact host survival following S. Typhimurium infection, which differs from previous findings based on inert lipopolysaccharide (LPS) injections. Finally, although necroptosis is typically characterized as highly inflammatory, our data suggest that RIPK3 skews the peritoneal myeloid population away from an inflammatory profile to that of a classically noninflammatory profile. Collectively, these data improve our understanding of S. Typhimurium-macrophage interactions, highlight the possibility that purified bacterial components may not accurately recapitulate the complexity of host-pathogen interactions, and reveal a potential and unexpected role for RIPK3 in resolving inflammation. IMPORTANCE Macrophages employ multiple strategies to limit pathogen infection. For example, macrophages may undergo regulated cell death, including RIPK3-dependent necroptosis, as a means of combatting intracellular bacterial pathogens. However, bacteria have evolved mechanisms to evade or exploit immune responses. Salmonella is an intracellular pathogen that avoids and manipulates immune detection within macrophages. We examined the contribution of RIPK3 to Salmonella-induced macrophage death. Our findings indicate that noninvasive Salmonella does not naturally induce necroptosis, but it does so when caspases are inhibited. Moreover, RIPK3 induction (following caspase inhibition) does not impact host survival following Salmonella systemic infection. Finally, our data show that RIPK3 induction results in recruitment of low-inflammatory myeloid cells, which was unexpected, as necroptosis is typically described as highly inflammatory. Collectively, these data improve our understanding of pathogen-macrophage interactions, including outcomes of regulated cell death during infection in vivo, and reveal a potential new role for RIPK3 in resolving inflammation

    Emergency Department Ultrasound Is not a Sensitive Detector of Solid Organ Injury

    Get PDF
    Objective: To estimate the sensitivity and specificity of emergency department (ED) ultrasound for the detection of solid organ injury following blunt abdominal trauma.Methods: A prospective cohort study performed in the ED of an urban Level I trauma center on patients who sustained blunt abdominal trauma. Following initial standard trauma evaluation, patients underwent a secondary ultrasound examination performed specifically to identify injury to the liver or spleen, followed by computed tomography (CT) scan of the abdomen. Ultrasound examinations were performed by emergency medicine residents or attending physicians experienced in the use of ultrasound for detecting hemoperitoneum. Ultrasonographers prospectively determined the presence or absence of liver or spleen injury. CT findings were used as the criterion standard to evaluate the ultrasound results.Results: From July 1998 through June 1999, 152 patients underwent secondary ultrasound examination and CT. Of the 152 patients, nine (6%) had liver injuries and 10 (7%) had spleen injuries. Ultrasound correctly detected only one of the liver injuries for a sensitivity of 11% (95% CI: 0%-48%) and a specificity of 98% (95% CI: 94%-100%). Ultrasound correctly detected eight spleen injuries for a sensitivity of 80% (95% CI: 44%-98%) and a specificity of 99% (95% CI: 95%-100%).Conclusion: Emergency ultrasound is not sensitive or specific for detecting liver or spleen injuries following blunt abdominal trauma.[WestJEM. 2009;10:1-5.

    Grizzly Bear Population Trend Estimated Using Genetic Detection

    Get PDF
    We use genetic detection data from natural bear rub sites to estimate annual rate of change for a threatened grizzly bear (Ursus arctos) population in the 33,300 km2 Northern Continental Divide Ecosystem (NCDE) in northwestern Montana, USA). Bear rubs were surveyed twice annually in 2004, 2009-2012 (3,580 – 4,805 rubs).  We detected approximately 1/3 of the grizzly bear population annually. Using spatially explicit capturerecapture (SCR) models in a maximum likelihood framework, we estimate growth rate from the slope of a linear regression fit to the log of density estimates.  To evaluate the usefulness of our estimates, we compare them to estimates of ? made using independent data from known-fate telemetry monitoring for our population.  Total annual population rate of change was 1.056 (95% CI = 1.033-1.079). The large sample sizes generated by genetic detection provided information on variation in density and trend within the NCDE useful for designing monitoring and management strategies tailored to area-specific needs and priorities.  Local rates of change within the NCDE were higher in areas of lower density and population expansion than in Glacier NP, the area with highest density.  As density increased, the amount of space used by bears estimated by the SCR models, ?, decreased. Hair collection from natural bear rub sites was an efficient sampling approach able to generate precise estimates of annual growth rate from 2 years of data

    Considerations for Cross Domain / Mission Resource Allocation and Replanning

    Get PDF
    NPS NRP Executive SummaryNaval platforms are inherently multi-mission - they execute a variety of missions simultaneously. Ships, submarines, and aircraft support multiple missions across domains, such as integrated air and missile defense, ballistic missile defense, anti-submarine warfare, strike operations, naval fires in support of ground operations, and intelligence, surveillance, and reconnaissance. Scheduling and position of these multi-mission platforms is problematic since one warfare area commander desires one position and schedule, while another may have a completely different approach. Commanders struggle to decide and adjudicate these conflicts, because there is plenty of uncertainty about the enemy and the environment. This project will explore emerging innovative data analytic technologies to optimize naval resource allocation and replanning across mission domains. NPS proposes a study that will evaluate the following three solution concepts for this application: (1) game theory, (2) machine learning, and (3) wargaming. The study will first identify a set of operational scenarios that involve distributed and diverse naval platforms and resources and a threat situation that requires multiple concurrent missions in multiple domains. The NPS team will use these scenarios to evaluate the three solution concepts and their applicability to supporting resource allocation and replanning. This project will provide valuable insights into innovative data analytic solution concepts to tackle the Navy's challenge of conducing multiple missions with cross-domain resources.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Considerations for Cross Domain / Mission Resource Allocation and Replanning

    Get PDF
    NPS NRP Technical ReportNaval platforms are inherently multi-mission - they execute a variety of missions simultaneously. Ships, submarines, and aircraft support multiple missions across domains, such as integrated air and missile defense, ballistic missile defense, anti-submarine warfare, strike operations, naval fires in support of ground operations, and intelligence, surveillance, and reconnaissance. Scheduling and position of these multi-mission platforms is problematic since one warfare area commander desires one position and schedule, while another may have a completely different approach. Commanders struggle to decide and adjudicate these conflicts, because there is plenty of uncertainty about the enemy and the environment. This project will explore emerging innovative data analytic technologies to optimize naval resource allocation and replanning across mission domains. NPS proposes a study that will evaluate the following three solution concepts for this application: (1) game theory, (2) machine learning, and (3) wargaming. The study will first identify a set of operational scenarios that involve distributed and diverse naval platforms and resources and a threat situation that requires multiple concurrent missions in multiple domains. The NPS team will use these scenarios to evaluate the three solution concepts and their applicability to supporting resource allocation and replanning. This project will provide valuable insights into innovative data analytic solution concepts to tackle the Navy's challenge of conducing multiple missions with cross-domain resources.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Effects of spaceflight on musculoskeletal health: A systematic review and meta-analysis, considerations for interplanetary travel

    Get PDF
    Background: If interplanetary travel is to be successful over the coming decades, it is essential that countermeasures to minimize deterioration of the musculoskeletal system are as effective as possible, given the increased duration of spaceflight associated with such missions. The aim of this review, therefore, is to determine the magnitude of deconditioning of the musculoskeletal system during prolonged spaceflight and recommend possible methods to enhance the existing countermeasures. Methods: A literature search was conducted using PubMed, Ovid and Scopus databases. 5541 studies were identified prior to the removal of duplicates and the application of the following inclusion criteria: (1) group means and standard deviations for pre- and post-spaceflight for measures of strength, muscle mass or bone density were reported (or provided by the corresponding author when requested via e-mail), (2) exercise-based countermeasures were included, (3) the population of the studies were human, (4) muscle function was assessed and (5) spaceflight rather than simulated spaceflight was used. The methodological quality of the included studies was evaluated using a modified Physiotherapy Evidence Database (PEDro) scale for quality, with publication bias assessed using a failsafe N (Rosenthal method), and consistency of studies analysed using I2 as a test of heterogeneity. Secondary analysis of studies included Hedges’ g effect sizes, and between-study differences were estimated using a random-effects model. Results: A total of 11 studies were included in the meta-analyses. Heterogeneity of the completed meta-analyses was conducted revealing homogeneity for bone mineral density (BMD) and spinal muscle size (Tau2 \u3c 0.001; I2 = 0.00%, p \u3e 0.05), although a high level of heterogeneity was noted for lower body force production (Tau2 = 1.546; I2 = 76.03%, p \u3c 0.001) and lower body muscle mass (Tau2 = 1.386; I2 = 74.38%, p \u3c 0.001). The estimated variance ( ≤ -0.306) for each of the meta-analyses was significant (p ≤ 0.033), for BMD (− 0.48 to − 0.53, p \u3c 0.001), lower body force production (− 1.75, p \u3c 0.001) and lower body muscle size (− 1.98, p \u3c 0.001). Spaceflight results in small reductions in BMD of the femur (Hedges g = − 0.49 [− 0.69 to – 0.28]), trochanter (Hedges g = − 0.53 [− 0.77 to – 0.29]), and lumbo-pelvic region (Hedges g = − 0.48 [− 0.73 to – 0.23]), but large decreases in lower limb force production (Hedges g = − 1.75 [− 2.50 to – 0.99]) and lower limb muscle size (Hedges g = − 1.98 [− 2.72 to – 1.23]). Conclusions: Current exercise countermeasures result in small reductions in BMD during long-duration spaceflight. In contrast, such exercise protocols do not alleviate the reductions in muscle function or muscle size, which may be attributable to the low to moderate loads reported by crewmembers and the interference effect associated with concurrent training. It is recommended that higher-load resistance exercise and the use of high-intensity interval training should be investigated, to determine if such modifications to the reported training practices result in more effective countermeasures to the deleterious effect of long-duration spaceflight on the muscular system

    Considerations for Cross Domain / Mission Resource Allocation and Replanning

    Get PDF
    NPS NRP Project PosterNaval platforms are inherently multi-mission - they execute a variety of missions simultaneously. Ships, submarines, and aircraft support multiple missions across domains, such as integrated air and missile defense, ballistic missile defense, anti-submarine warfare, strike operations, naval fires in support of ground operations, and intelligence, surveillance, and reconnaissance. Scheduling and position of these multi-mission platforms is problematic since one warfare area commander desires one position and schedule, while another may have a completely different approach. Commanders struggle to decide and adjudicate these conflicts, because there is plenty of uncertainty about the enemy and the environment. This project will explore emerging innovative data analytic technologies to optimize naval resource allocation and replanning across mission domains. NPS proposes a study that will evaluate the following three solution concepts for this application: (1) game theory, (2) machine learning, and (3) wargaming. The study will first identify a set of operational scenarios that involve distributed and diverse naval platforms and resources and a threat situation that requires multiple concurrent missions in multiple domains. The NPS team will use these scenarios to evaluate the three solution concepts and their applicability to supporting resource allocation and replanning. This project will provide valuable insights into innovative data analytic solution concepts to tackle the Navy's challenge of conducing multiple missions with cross-domain resources.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Predictors and outcomes of Mycobacterium tuberculosis bacteremia among patients with HIV and tuberculosis co-infection enrolled in the ACTG A5221 STRIDE study

    Get PDF
    Background: We evaluated predictors and outcomes of Mycobacterium tuberculosis bacteremia among participants undergoing baseline mycobacterial blood culture in the ACTG A5221 STRIDE study, a randomized clinical trial comparing earlier with later ART among HIV-infected patients suspected of having tuberculosis with CD4-positive T-lymphocyte counts (CD4 counts) <250 cells/mm3. We conducted a secondary analysis comparing participants with respect to presence or absence of M. tuberculosis bacteremia. Methods: Participants with a baseline mycobacterial blood culture were compared with respect to the presence or absence of M. tuberculosis bacteremia. Baseline predictors of M. tuberculosis bacteremia were identified and participant outcomes were compared by mycobacteremia status. Results: Of 90 participants with baseline mycobacterial blood cultures, 29 (32.2%) were female, the median (IQR) age was 37 (31–45) years, CD4 count was 81 (33–131) cells/mm3, HIV-1 RNA level was 5.39 (4.96–5.83) log10 copies/mL, and 18 (20.0%) had blood cultures positive for M. tuberculosis. In multivariable analysis, lower CD4 count (OR 0.85 per 10-cell increase, p = 0.012), hemoglobin ≤8.5 g/dL (OR 5.8, p = 0.049), and confirmed tuberculosis (OR 17.4, p = 0.001) were associated with M. tuberculosis bacteremia. There were no significant differences in survival and AIDS-free survival, occurrence of tuberculosis immune reconstitution inflammatory syndrome (IRIS), or treatment interruption or discontinuation by M. tuberculosis bacteremia status. IRIS did not differ significantly between groups despite trends toward more virologic suppression and greater CD4 count increases at week 48 in the bacteremic group. Conclusions: Among HIV-infected tuberculosis suspects, lower CD4 count, hemoglobin ≤8.5 g/dL, and the presence of microbiologically confirmed pulmonary tuberculosis were associated with increased adjusted odds of mycobacteremia. No evidence of an association between M. tuberculosis bacteremia and the increased risk of IRIS was detected. Trial registration ClinicalTrials.gov: NCT00108862
    • …
    corecore