1,768 research outputs found

    The New Reproductive Technologies: An Overview and Theological Assessment

    Get PDF

    Factor Substitution and Unobserved Factor Quality in Nursing Homes

    Get PDF
    This paper studies factor substitution in one important sector: the nursing home industry. Specifically, we measure the extent to which nursing homes substitute materials for labor when labor becomes relatively more expensive. From a policy perspective, factor substitution in this market is important because materials-intensive methods of care are associated with greater risks of morbidity and mortality among nursing home residents. Studying longitudinal data from 1991-1998 on nearly every nursing home in the United States, we use the method of instrumental variables (IV) to address the potential endogeneity of nursing home wages. The results from the IV models are consistent with the theory of factor substitution: higher nursing home wages are associated with lower staffing, greater use of materials (specifically, physical restraints), and a higher proportion of residents with pressure ulcers. A comparison of OLS and IV results suggests that empirical studies of factor substitution should take into account unobserved heterogeneity in factor quality.

    Substitution Laws and Innovation in the Pharmaceutical Industry

    Get PDF
    When the sensors readings are perturbed by an unknown stochastic time jitter, classical system identification algorithms based on additive amplitude perturbations will give biased estimates. We here outline the maximum likelihood procedure, for the case of both time and amplitude noise, in the frequency domain, based on the measurement DFT. The method directly applies to output error continuous time models, while a simple sinusoid in noise example is used to illustrate the bias removal of the proposed method

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    Illusory predictors: Generalizability of findings in cocaine treatment retention research.

    Get PDF
    Treatment retention is of paramount importance in cocaine treatment research as treatment completion rates are often 50% or less. Failure to retain cocaine patients in treatment has both significant research and clinical implications. In this paper we qualitatively and quantitatively demonstrate the inconsistency found across analyses of retention predictors in order to highlight the problem. First, a qualitative review of the published literature was undertaken to identify the frequency of predictors studied and their relations to treatment retention. Second, an empirical demonstration of predictor stability was conducted by testing a common set of variables across three similar 12-week cocaine clinical trials conducted by the same investigators in the same research clinic within a five-year period. Results of the literature review indicated inconsistently selected variables of convenience, widely varying statistical procedures, and discrepant findings of significance. Further, quantitative analyses resulted in discrepancies in variables identified as significant predictors of retention among the three studies. Potential sources of heterogeneity affecting the consistency of findings across studies and recommendations to improve the validity and generalizability of predictor findings in future studies are proposed

    Pseudospectral Calculation of the Wavefunction of Helium and the Negative Hydrogen Ion

    Full text link
    We study the numerical solution of the non-relativistic Schr\"{o}dinger equation for two-electron atoms in ground and excited S-states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wavefunction, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wavefunction's cusp-like behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence. A comparison of several different treatments of the cusps and the semi-infinite domain suggest that the simplest prescription is sufficient. For many purposes it proves unnecessary to handle the logarithmic behavior near the three-particle coalescence in a special way. The PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wavefunction near cusps or at large distances, the local energy is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to other bound states. This study serves as a proof-of-principle of the method for more general two- and possibly three-electron applications.Comment: 23 pages, 20 figures, 2 tables, Final refereed version - Some references added, some stylistic changes, added paragraph to matrix methods section, added last sentence to abstract

    Lie families: theory and applications

    Full text link
    We analyze families of non-autonomous systems of first-order ordinary differential equations admitting a common time-dependent superposition rule, i.e., a time-dependent map expressing any solution of each of these systems in terms of a generic set of particular solutions of the system and some constants. We next study relations of these families, called Lie families, with the theory of Lie and quasi-Lie systems and apply our theory to provide common time-dependent superposition rules for certain Lie families.Comment: 23 pages, revised version to appear in J. Phys. A: Math. Theo
    corecore