29 research outputs found

    Dental equipment test during zero-gravity flight

    Get PDF
    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well

    Transport suction apparatus and absorption materials evaluation

    Get PDF
    The specific objectives were as follows. The effectiveness and function was evaluated of the hand held, manually powered v-vac for suction during microgravity. The function was evaluated of the battery powered laerdal suction unit in microgravity. The two units in control of various types of simulated bodily fluids were compared. Various types of tubing and attachments were evaluated which are required to control the collection of bodily fluids during transport. Various materials were evaluated for absorption of simulated bodily fluids. And potential problems were identified for waste management and containment of secretions and fluids during transport. Test procedures, results, and conclusions are briefly discussed

    Health maintenance facility: Dental equipment requirements

    Get PDF
    The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given

    Evaluation of cardiopulmonary resuscitation techniques in microgravity

    Get PDF
    Cardiopulmonary resuscitation (CPR) techniques were investigated in microgravity with specific application to planned medical capabilities for Space Station Freedom (SSF). A KC-135 parabolic flight test was performed with the goal of evaluating and quantifying the efficacy of different types of microgravity CPR techniques. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. Three experiments were involved chosen for their clinical background, certification, and practical experience in prior KC-135 parabolic flight. The CPR evaluation was performed using a standard training mannequin (recording resusci-Annie) which was used in practice prior to the actual flight. Aboard the KC-135, the prototype medical restraint system (MRS) for the SSF Health Maintenance Facility (HMF) was used for part of the study. Standard patient and crew restraints were used for interface with the MRS. During the portion of study where CPR was performed without MRS, a set of straps for crew restraint similar to those currently employed for the Space Shuttle program were used. The entire study was recorded via still camera and video

    Mini-rack testbed evaluation

    Get PDF
    The goal was to characterize the Health Maintenance Facility (HMF)-like mini-racks and drawers onboard the KC-135 as a test bed for the Space Station Freedom HMF racks. An additional goal was to evaluate the attachments, mounting points, and inner drawer assemblies of the mini-racks for various medical equipment and supplies. Results and recommendations are given

    Evaluation of aerosolized medications during parabolic flight maneuvers

    Get PDF
    The goal was to visually evaluate the effect gravity has on delivery of medications by the use of various aerosol devices. During parabolic flight the same four aerosols were retested as performed in studio ground tests. It appears that the Cetacaine spray and the Ventolin inhaler function without failure during all test. The pump spray (Nostril) appeared to function normally when the container was full, however it appeared to begin to fail to deliver a full mist with larger droplet size when the container was nearly empty. The simple hand spray bottle appeared to work when the container was full and performed progressively worse as the container was emptied. During Apollo flights, it was reported that standard spray bottles did not work well, however, they did not indicate why. It appears that we would also conclude that standard spray bottles do not function as well in zero gravity by failing to produce a normal mist spray. The standard spray bottle allowed the fluid to come out in a narrow fluid stream when held with the nozzle either level or slightly tilted upward

    ATLS: Catheter and tube placement

    Get PDF
    The specific objectives of this experiment are: to evaluate the rack mounted equipment and medical supplies necessary for medical procedures; to evaluate the attachments, mounting points, and inner drawer assemblies for the medical supplies; and to evaluate the procedures for performing medical scenarios. The resources available in the HMF miniracks to accomplish medical scenarios and/or procedures include: medical equipment mounted in the racks; a patch panel with places to attach tubing and catheters; self contained drawers full of critical care medical supplies; and an ALS 'backpack' for deploying supplies. The attachment lines, tubing and associated medical supplies will be deployed and used with the equipment and a patient mannequin. Data collection is provided by direct observations by the inflight experimenters, and analysis of still and video photography

    Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    Get PDF
    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented

    Application and use of spinal immobilization devices in zero-gravity flight

    Get PDF
    A KC-135 parabolic flight was performed for the purpose of evaluation of spinal immobilization techniques in microgravity. The flight followed the standard 40 parabola profile with four NASA/KRUG experimenters involved. One performed as coordinator/recorder, one as test subject, and two as the Crew Medical Officers (CMO). The flight was to evaluate the application of spinal immobilization devices and techniques in microgravity as are performed during initial stabilization or patient transport scenarios. The sequence of detail for examination of the following objectives included: attempted cervical spine immobilization with all free floating, the patient restrained to the floor, various hand positioning techniques; c-collar placement; Kendrick Extrication Device (KED) application with various restraints for patient and CMO; patient immobilization and transport using the KED; patient transported on KED and spine board. Observations for each task are included. Major conclusions and issues are also included
    corecore