36 research outputs found

    A tandem evolutionary algorithm for identifying causal rules from complex data

    Get PDF
    We propose a new evolutionary approach for discovering causal rules in complex classification problems from batch data. Key aspects include (a) the use of a hypergeometric probability mass function as a principled statistic for assessing fitness that quantifies the probability that the observed association between a given clause and target class is due to chance, taking into account the size of the dataset, the amount of missing data, and the distribution of outcome categories, (b) tandem age-layered evolutionary algorithms for evolving parsimonious archives of conjunctive clauses, and disjunctions of these conjunctions, each of which have probabilistically significant associations with outcome classes, and (c) separate archive bins for clauses of different orders, with dynamically adjusted order-specific thresholds. The method is validated on majority-on and multiplexer benchmark problems exhibiting various combinations of heterogeneity, epistasis, overlap, noise in class associations, missing data, extraneous features, and imbalanced classes. We also validate on a more realistic synthetic genome dataset with heterogeneity, epistasis, extraneous features, and noise. In all synthetic epistatic benchmarks, we consistently recover the true causal rule sets used to generate the data. Finally, we discuss an application to a complex real-world survey dataset designed to inform possible ecohealth interventions for Chagas disease

    British Survey Handbooks: Denmark

    No full text

    Provably Good Mesh Generation

    Get PDF
    We study several versions of the problem of generating triangular meshes for finite element methods. We show how to triangulate a planar point set or polygonally bounded domain with triangles of bounded aspect ratio; how to triangulate a planar point set with triangles having no obtuse angles; how to triangulate a point set in arbitrary dimension with simplices of bounded aspect ratio; and how to produce a linear-size Delaunay triangulation of a multi-dimensional point set by adding a linear number of extra points. All our triangulations have size (number of triangles) within a constant factor of optimal, and run in optimal time O(n log n+k) with input of size n and output of size k. No previous work on mesh generation simultaneously guarantees well-shaped elements and small total size. 1

    Provably Good Mesh Generation

    No full text
    We study several versions of the problem of generating triangular meshes for finite element methods. We show how to triangulate a planar point set or polygonally bounded domain with triangles of bounded aspect ratio; how to triangulate a planar point set with triangles having no obtuse angles; how to triangulate a point set in arbitrary dimension with simplices of bounded aspect ratio; and how to produce a linear-size Delaunay triangulation of a multi-dimensional point set by adding a linear number of extra points. All our triangulations have size (number of triangles) within a constant factor of optimal, and run in optimal time O(n log n+k) with input of size n and output of size k. No previous work on mesh generation simultaneously guarantees well-shaped elements and small total size. 1. Introduction Geometric partitioning problems ask for the decomposition of a geometric input into simpler objects. These problems are fundamental in many areas, such as solid modeling, computeraided ..
    corecore