5,029 research outputs found

    Performance and optimization of a derated ion thruster for auxiliary propulsion

    Get PDF
    The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed

    Very Large Area/Volume Microwave ECR Plasma and Ion Source

    Get PDF
    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows

    Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Get PDF
    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications

    Orbital, Superhump and Superorbital Periods in the Cataclysmic Variables AQ Mensae and IM Eridani

    Get PDF
    We report photometric detections of orbital and superorbital signals, and negative orbital sidebands, in the light curves of the nova-like cataclysmic variables AQ Mensae and IM Eridani. The frequencies of the orbital, superorbital, and sideband signals are 7.0686 (3), 0.263 (3), and 7.332 (3) cycles per day (c/d) in AQ Mensae, and 6.870 (1), 0.354 (7), and 7.226 (1) c/d in IM Eridani. We also find a spectroscopic orbital frequency in IM Eridani of 6.86649 (2) c/d. These observations can be reproduced by invoking an accretion disc that is tilted with respect to the orbital plane. This model works well for X-ray binaries, in which irradiation by a primary neutron star can account for the disc\u27s tilt. A likely tilt mechanism has yet to be identified in CVs, yet the growing collection of observational evidence indicates that the phenomenon of tilt is indeed at work in this class of object. The results presented in this paper bring the number of CVs known to display signals associated with retrograde disc precession to twelve. We also find AQ Mensae to be an eclipsing system. The eclipse depths are highly variable, which suggests that the eclipses are grazing. This finding raises the possibility of probing variations in disc tilt by studying systematic variations in the eclipse profile

    New diatom taxa from the world’s first marine Bioblitz held in New Zealand: Skeletomastus a new genus, Skeletomastus coelatus nov. comb. and Pleurosigma inscriptura a new species

    Get PDF
    Diatoms were investigated as part of the world’s first marine Bioblitz held on the south coast of Wellington, New Zealand, in October 2007. Two unusual diatoms were associated with the red alga Herposiphonia ceratoclada. They were examined by light and scanning electron microscopy. The first, previously described as »Cocconeis coelata« Arnott ex Greville, is a thick-ribbed biraphid diatom that appears to have an undular raphe and marginal septum like some Mastogloia species, but it does not have partecta in the valvocopula. Instead it has short marginal ribs that support a pseudoseptum. Its solid lyre and multiseriate striae with cibrate pores could be modifications of similar structures in Aneumastus aksaraiensis Spaulding et al. It typifies the new genus Skeletomastus which appears to be close to both Mastogloia and Aneumastus, hence the name. The second is a proposed new Pleurosigma species, P. inscriptura with naviculoid symmetry and a markedly sigmoid raphe system with deflected ends. It appears bright blue in darkfield illumination which helped us locate it in other samples from theWellington region.We compare it with some other Pleurosigma species and consider their diffraction properties

    Comparison of Three Equations for Predicting Stress Wave Velocity As A Function of Grain Angle

    Get PDF
    Assessment of a nondestructive test system for detecting defects in the gluelines of edge-glued hardwood panels required development of a mathematical relationship for predicting stress wave velocity as a function of grain angle. This relationship was necessary to understand better how stress waves propagated around gaps or flaws in a glueline. In addition, the relationship was needed to assess the influence of specimen geometry upon the effectiveness of the stress wave technique.Equations were generated by a statistical regression analysis software package and compared to Hankinson's equation. Equations were based upon measured velocity of stress waves traveling at angles between 0 and 90 degrees to the grain at 15 degree intervals in birch, black cherry, red oak, yellow-poplar, and western white pine boards. Regression analyses indicated that the best correlations were found with second order hyperbolic and parabolic equations. The two equations were compared to Hankinson's equation and to each other by using Absolute Average Error (AAE) for each equation for each species and for all species combined at each of the grain angles for which data were collected. Hankinson's equation produces the least AAE of the three equations although the hyperbolic and parabolic equations must also be considered reasonable predictors of stress wave velocity at most angles to the grain

    Low-Temperature Power Electronics Program

    Get PDF
    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems

    Dietary Energy Density as Marker of Dietary Quality in Swedish Children and Adolescents: The European Youth Heart Study

    Get PDF
    To investigate if dietary energy density is associated with measures of dietary quality (food group, micronutrient and macronutrient intakes) in children and adolescents

    The Effect of Ischemic Preconditioning on Repeated Sprint Cycling Performance

    Get PDF
    Purpose: Ischemic preconditioning enhances exercise performance. We tested the hypothesis that ischemic preconditioning would improve intermittent exercise in the form of a repeated sprint test during cycling ergometry.Methods: In a single-blind, crossover study, 14 recreationally active men (mean ± SD age, 22.9 ± 3.7 yr; height, 1.80 ± 0.07 m; and mass, 77.3 ± 9.2 kg) performed twelve 6-s sprints after four 5-min periods of bilateral limb occlusion at 220 mm Hg (ischemic preconditioning) or 20 mm Hg (placebo).Results: Ischemic preconditioning resulted in a 2.4% ± 2.2%, 2.6% ± 2.7%, and 3.7% ± 2.4% substantial increase in peak power for sprints 1, 2, and 3, respectively, relative to placebo, with no further changes between trials observed for any other sprint. Similar findings were observed in the first three sprints for mean power output after ischemic preconditioning (2.8% ± 2.5%, 2.6% ± 2.5%, and 3.4% ± 2.1%, for sprints 1, 2, and 3, respectively), relative to placebo. Fatigue index was not substantially different between trials. At rest, tissue saturation index was not different between the trials. During the ischemic preconditioning/placebo stimulus, there was a -19.7% ± 3.6% decrease in tissue saturation index in the ischemic preconditioning trial, relative to placebo. During exercise, there was a 5.4% ± 4.8% greater maintenance of tissue saturation index in the ischemic preconditioning trial, relative to placebo. There were no substantial differences between trials for blood lactate, electromyography (EMG) median frequency, oxygen uptake, or rating of perceived exertion (RPE) at any time points.Conclusion: Ischemic preconditioning improved peak and mean power output during the early stages of repeated sprint cycling and may be beneficial for sprint sports

    Realization of Coherent Optically Dense Media via Buffer-Gas Cooling

    Get PDF
    We demonstrate that buffer-gas cooling combined with laser ablation can be used to create coherent optical media with high optical depth and low Doppler broadening that offers metastable states with low collisional and motional decoherence. Demonstration of this generic technique opens pathways to coherent optics with a large variety of atoms and molecules. We use helium buffer gas to cool 87Rb atoms to below 7 K and slow atom diffusion to the walls. Electromagnetically induced transparency (EIT) in this medium allows for 50% transmission in a medium with initial OD >70 and for slow pulse propagation with large delay-bandwidth products. In the high-OD regime, we observe high-contrast spectrum oscillations due to efficient four-wave mixing.Comment: 4 pages, 4 figures. V2: modified title, abstract, introduction, conclusion; added references; improved theoretical fit in figure 3(b); shortened slow light theory description; clarified simplicity of apparatus. Final version as published in Phys. Rev.
    corecore