19,236 research outputs found

    Taxation, Resource Mobilisation, and State Performance

    Get PDF

    Political Settlements: Issues paper

    Get PDF
    Why do similar sets of formal institutions often have such divergent outcomes? An analysis of political settlements goes some way to answering this question by bringing into focus the contending interests that exist within any state, which constrain and facilitate institutional and developmental change. It provides a framework to analyse how the state is linked to society and what lies behind the formal representation of politics in a state. The political settlement and the elite bargains from which it emerges are central to patterns of state fragility and resilience. The role of political organisation within the political settlement is crucial to both the stability of the settlement and the direction in which it evolves over time. The elite bargains that may lead to the establishment of what might be considered a resilient political settlement may also act as a barrier to progressive developmental change. Analysis of political settlements suggests that state-building is far from a set of technical formulas, but is a highly political process. Creating capacity within a state to consolidate and expand taxation is fundamentally determined by the shape of the political settlement underlying the state. This is true as well for the development of service delivery or any other function of the state. This analytical framework provides a window for donors to grasp the politics of a place in order to design more effective interventions

    The Political Economy of Taxation and Tax Reform in Developing Countries

    Get PDF
    taxation, tax reform, political economy, state capacity, developing countries

    A note on Stokes' problem in dense granular media using the μ(I)\mu(I)--rheology

    Full text link
    The classical Stokes' problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed μ(I)\mu(I)--rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time tt as νt\sqrt{\nu t}, where ν\nu is the kinematic viscosity. For a dense granular visco-plastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short-time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as νgt\sqrt{\nu_g t} analogous to a Newtonian fluid where νg\nu_g is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular media such as grain diameter dd, density ρ\rho and friction coefficients but also on the applied pressure pwp_w at the moving wall and the solid fraction ϕ\phi (constant). In addition, the μ(I)\mu(I)--rheology indicates that this growth continues until reaching the steady-state boundary layer thickness δs=βw(pw/ϕρg)\delta_s = \beta_w (p_w/\phi \rho g ), independent of the grain size, at about a finite time proportional to βw2(pw/ρgd)3/2d/g\beta_w^2 (p_w/\rho g d)^{3/2} \sqrt{d/g}, where gg is the acceleration due to gravity and βw=(τwτs)/τs\beta_w = (\tau_w - \tau_s)/\tau_s is the relative surplus of the steady-state wall shear-stress τw\tau_w over the critical wall shear stress τs\tau_s (yield stress) that is needed to bring the granular media into motion... (see article for a complete abstract).Comment: in press (Journal of Fluid Mechanics

    Electron turbulence at nanoscale junctions

    Full text link
    Electron transport through a nanostructure can be characterized in part using concepts from classical fluid dynamics. It is thus natural to ask how far the analogy can be taken, and whether the electron liquid can exhibit nonlinear dynamical effects such as turbulence. Here we present an ab-initio study of the electron dynamics in nanojunctions which reveals that the latter indeed exhibits behavior quite similar to that of a classical fluid. In particular, we find that a transition from laminar to turbulent flow occurs with increasing current, corresponding to increasing Reynolds numbers. These results reveal unexpected features of electron dynamics and shed new light on our understanding of transport properties of nanoscale systems.Comment: 5 pages, 3 figure

    Contraction analysis of switched Filippov systems via regularization

    Get PDF
    We study incremental stability and convergence of switched (bimodal) Filippov systems via contraction analysis. In particular, by using results on regularization of switched dynamical systems, we derive sufficient conditions for convergence of any two trajectories of the Filippov system between each other within some region of interest. We then apply these conditions to the study of different classes of Filippov systems including piecewise smooth (PWS) systems, piecewise affine (PWA) systems and relay feedback systems. We show that contrary to previous approaches, our conditions allow the system to be studied in metrics other than the Euclidean norm. The theoretical results are illustrated by numerical simulations on a set of representative examples that confirm their effectiveness and ease of application.Comment: Preprint submitted to Automatic
    corecore