We study incremental stability and convergence of switched (bimodal) Filippov
systems via contraction analysis. In particular, by using results on
regularization of switched dynamical systems, we derive sufficient conditions
for convergence of any two trajectories of the Filippov system between each
other within some region of interest. We then apply these conditions to the
study of different classes of Filippov systems including piecewise smooth (PWS)
systems, piecewise affine (PWA) systems and relay feedback systems. We show
that contrary to previous approaches, our conditions allow the system to be
studied in metrics other than the Euclidean norm. The theoretical results are
illustrated by numerical simulations on a set of representative examples that
confirm their effectiveness and ease of application.Comment: Preprint submitted to Automatic