8 research outputs found

    Unnatural selection of salmon life histories in a modified riverscape

    Get PDF
    Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification

    Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    Get PDF
    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs

    Map of study region.

    No full text
    <p>The Mokelumne River and Mokelumne River Fish Hatchery in relation to the western United States, and the Sacramento-San Joaquin river system (shaded region) in California's Central Valley (insert). The in-river spawning habitat on the Mokelumne River consists of the area between its confluence with the Cosumnes River and upstream to the Camanche Dam (∟16 km).</p

    Estimate of hatchery and natural-origin salmon.

    No full text
    <p>Proportion of adult Chinook salmon (<i>Oncorhynchus tshawytscha</i>) spawning in-river on the Mokelumne River (USA) or within the entire Mokelumne River watershed (river+hatchery) assigned to hatchery or natural origins based on δ<sup>34</sup>S values in otoliths. Laplace point estimates and 95% Confidence Intervals (CI) were calculated using the Adjusted Wald estimate modified for small sample sizes.</p

    Adult Chinook salmon population trend.

    No full text
    <p>Stacked bar graph of the total number of adult fall-run Chinook salmon (<i>Oncorhynchus tshawytscha</i>) spawning on the Mokelumne River (black bars), and in the Mokelumne River Fish Hatchery (grey bars) from 1940–2009 (East Bay Municipal Utility District, unpublished data). Graph shows adult spawning location and not rearing origin. Note: Mokelumne River Fish Hatchery was built in 1964.</p

    Frequency distribution of δ<sup>34</sup>S values in salmon otoliths.

    No full text
    <p>Histogram of otolith δ<sup>34</sup>S for the juvenile rearing portion of otoliths from unknown origin adult Chinook salmon (<i>Oncorhynchus tshawytscha</i>) spawning in-river on the Mokelumne River (USA). Fish assigned to natural origin (grey bars; N = 87) had δ<sup>34</sup>S values less than 6‰ (dashed line) and did not overlap with δ<sup>34</sup>S values from those identified as originating from a hatchery (open bars; N = 10). These results indicate that 90% of in-river spawners were produced in a hatchery.</p

    Population growth rates.

    No full text
    <p>Population growth estimates of Chinook salmon (<i>Oncorhynchus tshawytscha</i>) on the Mokelumne River watershed from cohort reconstruction. Apparent growth rate estimates (open circles) show several years where cohort replacement values exceed 1 (solid line). Natural population growth rates (filled circles) remove the influence of immigration from hatchery fish. These results suggest that in-river populations are being supported by hatchery sources.</p
    corecore