2,802 research outputs found
Deformation of Silica Aerogel During Fluid Adsorption
Aerogels are very compliant materials - even small stresses can lead to large
deformations. In this paper we present measurements of the linear deformation
of high porosity aerogels during adsorption of low surface tension fluids,
performed using a Linear Variable Differential Transformer (LVDT). We show that
the degree of deformation of the aerogel during capillary condensation scales
with the surface tension, and extract the bulk modulus of the gel from the
data. Furthermore we suggest limits on safe temperatures for filling and
emptying low density aerogels with helium.Comment: 8 pages, 5 figures, submitted to PR
Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy
We present an experimental technique enabling mechanical-noise free,
cavity-enhanced frequency measurements of an atomic transition and its
hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG
laser and an iodine vapour cell. The cell is placed in a traveling-wave
Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams.
The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise
is rejected by differencing pump and probe signals. In addition, this
differenced error signal gives a sensitive measure of differential
non-linearity within the FPI.Comment: 3 pages, 5 figures, submitted to Optics Letter
Extraordinary human energy consumption and resultant geological impacts beginning around 1950CE initiated the proposed Anthropocene Epoch
Growth in fundamental drivers—energy use, economic productivity and population—can provide quantitative indications of the proposed boundary between the Holocene Epoch and the Anthropocene. Human energy expenditure in the Anthropocene, ~22 zetajoules (ZJ),exceeds that across the prior 11,700 years of the Holocene (~14.6 ZJ), largely through combustion of fossil fuels. The global warming effect during the Anthropocene is more thanan order of magnitude greater still. Global human population, their productivity and energy consumption, and most changes impacting the global environment, are highly correlated. This extraordinary outburst of consumption and productivity demonstrates how the Earth System has departed from its Holocene state since ~1950 CE, forcing abrupt physical, chemical and biological changes to the Earth’s stratigraphic record that can be used to justify the proposal for naming a new epoch—the Anthropocene
Diminishing Opportunities for Sustainability of Coastal Cities in the Anthropocene: A Review
The world is urbanizing most rapidly in tropical to sub-temperate areas and in coastal zones. Climate change along with other global change forcings will diminish the opportunities for sustainability of cities, especially in coastal areas in low-income countries. Climate forcings include global temperature and heatwave increases that are expanding the equatorial tropical belt, sea-level rise, an increase in the frequency of the most intense tropical cyclones, both increases and decreases in freshwater inputs to coastal zones, and increasingly severe extreme precipitation events, droughts, freshwater shortages, heat waves, and wildfires. Current climate impacts are already strongly influencing natural and human systems. Because of proximity to several key warming variables such as sea-level rise and increasing frequency and intensity of heatwaves, coastal cities are a leading indicator of what may occur worldwide. Climate change alone will diminish the sustainability and resilience of coastal cities, especially in the tropical-subtropical belt, but combined with other global changes, this suite of forcings represents an existential threat, especially for coastal cities. Urbanization has coincided with orders of magnitude increases in per capita GDP, energy use and greenhouse gas emissions, which in turn has led to unprecedented demand for natural resources and degradation of natural systems and more expensive infrastructure to sustain the flows of these resources. Most resources to fuel cities are extracted from ex-urban areas far away from their point of final use. The urban transition over the last 200 years is a hallmark of the Anthropocene coinciding with large surges in use of energy, principally fossil fuels, population, consumption and economic growth, and environmental impacts such as natural system degradation and climate change. Fossil energy enabled and underwrote Anthropocene origins and fueled the dramatic expansion of modern urban systems. It will be difficult for renewable energy and other non-fossil energy sources to ramp up fast enough to fuel further urban growth and maintenance and reverse climate change all the while minimizing further environmental degradation. Given these trajectories, the future sustainability of cities and urbanization trends, especially in threatened areas like coastal zones in low-income countries in the tropical to sub-tropical belt, will likely diminish. Adaptation to climate change may be limited and challenging to implement, especially for low-income countries
High resolution observations and modeling of MG0414+0534
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1995.Includes bibliographical references (p. 152-156).by John D. Ellithorpe.Ph.D
Exploring the Unknown: Selected Documents in the History of the U.S. Civilian Space Program
The documents selected for inclusion in this volume are presented in three chapters, each covering a particular aspect of the evolution of U.S. space exploration. These chapters address (1) the relations between the civilian space program of the United States and the space activities of other countries, (2) the relations between the U.S. civilian space program and the space efforts of national security organizations and the military, and (3) NASA's relations with industry and academic institutions
Optically Transparent Composite Material and Process for Preparing Same
Glass ribbon-reinforced transparent polymer composites which provide excellent optical transparency and a low distortion level over a wide temperature range while exhibiting superior mechanical properties as compared to non- reinforced polymer counterparts, and equivalent properties as compared to glass fiber-reinforced counterparts
Valsartan for attenuating disease evolution in early sarcomeric hypertrophic cardiomyopathy: the design of the Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) trial
Background:
Hypertrophic cardiomyopathy (HCM) is often caused by sarcomere gene mutations, resulting in left ventricular hypertrophy (LVH), myocardial fibrosis, and increased risk of sudden cardiac death and heart failure. Studies in mouse models of sarcomeric HCM demonstrated that early treatment with an angiotensin receptor blocker (ARB) reduced development of LVH and fibrosis. In contrast, prior human studies using ARBs for HCM have targeted heterogeneous adult cohorts with well-established disease. The VANISH trial is testing the safety and feasibility of disease-modifying therapy with an ARB in genotyped HCM patients with early disease.
Methods:
A randomized, placebo-controlled, double-blind clinical trial is being conducted in sarcomere mutation carriers, 8 to 45 years old, with HCM and no/minimal symptoms, or those with early phenotypic manifestations but no LVH. Participants are randomly assigned to receive valsartan 80 to 320 mg daily (depending on age and weight) or placebo. The primary endpoint is a composite of 9 z-scores in domains representing myocardial injury/hemodynamic stress, cardiac morphology, and function. Total z-scores reflecting change from baseline to final visits will be compared between treatment groups. Secondary endpoints will assess the impact of treatment on mutation carriers without LVH, and analyze the influence of age, sex, and genotype.
Conclusions:
The VANISH trial is testing a new strategy of disease modification for treating sarcomere mutation carriers with early HCM, and those at risk for its development. In addition, further insight into disease mechanisms, response to therapy, and phenotypic evolution will be gained
Phosphonopeptides Revisited, in an Era of Increasing Antimicrobial Resistance
Given the increase in resistance to antibacterial agents, there is an urgent need for the development of new agents with novel modes of action. As an interim solution, it is also prudent to reinvestigate old or abandoned antibacterial compounds to assess their efficacy in the context of widespread resistance to conventional agents. In the 1970s, much work was performed on the development of peptide mimetics, exemplified by the phosphonopeptide, alafosfalin. We investigated the activity of alafosfalin, di-alanyl fosfalin and β-chloro-L-alanyl-β-chloro-L-alanine against 297 bacterial isolates, including carbapenemase-producing Enterobacterales (CPE) (n = 128), methicillin-resistant Staphylococcus aureus (MRSA) (n = 37) and glycopeptide-resistant enterococci (GRE) (n = 43). The interaction of alafosfalin with meropenem was also examined against 20 isolates of CPE. The MIC50 and MIC90 of alafosfalin for CPE were 1 mg/L and 4 mg/L, respectively and alafosfalin acted synergistically when combined with meropenem against 16 of 20 isolates of CPE. Di-alanyl fosfalin showed potent activity against glycopeptide-resistant isolates of Enterococcus faecalis (MIC90; 0.5 mg/L) and Enterococcus faecium (MIC90; 2 mg/L). Alafosfalin was only moderately active against MRSA (MIC90; 8 mg/L), whereas β-chloro-L-alanyl-β-chloro-L-alanine was slightly more active (MIC90; 4 mg/L). This study shows that phosphonopeptides, including alafosfalin, may have a therapeutic role to play in an era of increasing antibacterial resistance
Use of Urban Tree Canopy Assessments by Localities in the Chesapeake Bay Watershed
Urban tree canopy (UTC) in the Chesapeake Bay watershed (CBW) provides numerous environmental, economic, and societal benefits. UTC assessments use remote sensing technology to deliver a comprehensive spatial snapshot of a locality’s existing UTC. Because UTC assessments delineate the extent and location of tree canopy cover in the context of other land covers (including plantable space), they are important for establishing tree canopy goals, creating and implementing strategies to achieve those goals, and monitoring progress. Over the past decade, UTC assessments have been completed for numerous localities in the CBW as a result of the Chesapeake Bay Program identifying UTC as a key strategy for Bay restoration. Our research investigated the prevalence of UTC assessments within the CBW and studied how localities are using them. We conducted two surveys: 1) a pilot survey of Virginia localities that received UTC assessments as part of the Virginia UTC project; and 2) a comprehensive survey of all 101 localities in the CBW with populations over 2,500 for which a UTC assessment existed as of May 2013. Surprisingly, 33% of localities in the CBW reported being unaware that a UTC assessment had been performed for their jurisdiction. In general, counties and cities were more likely to be aware of the assessments than were towns (or their jurisdictional equivalent). Most localities that were aware of their assessment were using it in some manner for urban forest planning and management; however, the most frequent activities were also the most basic uses, including: educating officials or citizens about the importance of tree canopy (57%), providing a baseline for evaluating progress toward UTC goals (49%), creating a locality-wide tree canopy goal (47%), planning and prioritizing tree plantings (45%), and informing larger initiatives (43%). All other uses of the assessments (i.e., specialized uses) were reported by 33% or fewer of the CBW localities. Our findings point to the need for outreach to local governments about UTC assessments and their potential uses, particularly in light of increasing emphasis in the CBW on managing urban forests and optimizing UTC as a Bay restoration strategy
- …