96 research outputs found

    The Effectiveness of Conservation Reserves: Land Tenure Impacts upon Biodiversity across Extensive Natural Landscapes in the Tropical Savannahs of the Northern Territory, Australia

    Get PDF
    This study examines whether there is a biodiversity benefit (“dividend”) associated with the existence and management of conservation reserves in the extensive and largely natural landscape of northern Australia. Species richness and abundance of vertebrate fauna and the intensity of a range of disturbance factors were compared across a set of 967 sampled quadrats, located either in pastoral lands, Indigenous lands or conservation reserves, with all sampled quadrats within a single vegetation type (open forests and savannah woodlands dominated by Eucalyptus miniata and/or E. tetrodonta). The relationships with land tenure varied between major taxonomic groups, but generally (and particularly for threatened species) values were highest for conservation reserves. This “biodiversity dividend” associated with conservation reserves is considered to be due to the effects of management rather than because conservation reserves were established on lands supporting atypically high conservation values. The impact of weeds and (unsurprisingly) livestock was greatest on pastoral lands, and pig impact was greatest in conservation reserves. Although pastoral and Indigenous lands supported lower biodiversity tallies than reserved lands, the conservation values of reserved lands in this region are probably substantially supported by the maintenance of relatively intact ecological systems across all lands

    A landscape-scale, applied fire management experiment promotes recovery of a population of the threatened Gouldian Finch, Erythrura gouldiae, in Australia\u27s tropical savannas

    Get PDF
    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species-one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)-from two large areas (> 2,830 km2) with initial contrasting fire regimes (\u27extreme\u27: frequent, extensive, intense fire; versus \u27benign\u27: less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the \u27benign\u27 fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species

    Global correlates of range contractions and expansions in terrestrial mammals

    Get PDF
    Understanding changes in species distributions is essential to disentangle the mechanisms that drive their responses to anthropogenic habitat modification. Here we analyse the past (1970s) and current (2017) distribution of 204 species of terrestrial non-volant mammals to identify drivers of recent contraction and expansion in their range. We find 106 species lost part of their past range, and 40 of them declined by >50%. The key correlates of this contraction are large body mass, increase in air temperature, loss of natural land, and high human population density. At the same time, 44 species have some expansion in their range, which correlates with small body size, generalist diet, and high reproductive rates. Our findings clearly show that human activity and life history interact to influence range changes in mammals. While the former plays a major role in determining contraction in species’ distribution, the latter is important for both contraction and expansion
    corecore