879 research outputs found

    Conversation Exchange Dynamics: A New Signal Primitive for Computer Network Intrusion Detection

    Get PDF
    As distributed network intrusion detection systems expand to integrate hundreds and possibly thousands of sensors, managing and presenting the associated sensor data becomes an increasingly complex task. Methods of intelligent data reduction are needed to make sense of the wide dimensional variations. We present a new signal primitive we call conversation exchange dynamics (CED) that accentuates anomalies in traffic flow. This signal provides an aggregated primitive that may be used by intrusion detection systems to base detection strategies upon. Indications of the signal in a variety of simulated and actual anomalous network traffic from distributed sensor collections are presented. Specifically, attacks from the MIT Lawrence Livermore IDS data set are considered. We conclude that CED presents a useful signal primitive for assistance in conducting IDS

    Pipeline synthetic aperture radar data compression utilizing systolic binary tree-searched architecture for vector quantization

    Get PDF
    A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array

    Entangled-Photon Compressive Ghost Imaging

    Get PDF
    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation

    Experimental investigation of flow-induced vibration of a rotating circular cylinder

    Get PDF
    While flow-induced vibration of bluff bodies has been extensively studied over the last half-century, only limited attention has been given to flow-induced vibration of elastically mounted rotating cylinders. Since recent low-Reynolds-number numerical work suggests that rotation can enhance or suppress the natural oscillatory response, the former could find applications in energy harvesting and the latter in vibration control. The present experimental investigation characterises the dynamic response and wake structure of a rotating circular cylinder undergoing vortex-induced vibration at a low mass ratio (m∗ = 5.78) over the reduced velocity range leading to strong oscillations. The experiments were conducted in a free-surface water channel with the cylinder vertically mounted and attached to a motor that provided constant rotation. Springs and an air-bearing system allow the cylinder to undertake low-damped transverse oscillations. Under cylinder rotation, the normalised frequency response was found to be comparable to that of a freely vibrating non-rotating cylinder. At reduced velocities consistent with the upper branch of a non-rotating transversely oscillating cylinder, the maximum oscillation amplitude increased with non-dimensional rotation rate up to α ≈ 2. Beyond this, there was a sharp decrease in amplitude. Notably, this critical value corresponds approximately to the rotation rate at which vortex shedding ceases for a non-oscillating rotating cylinder. Remarkably, at α = 2 there was approximately an 80% increase in the peak amplitude response compared to that of a non-rotating cylinder. The observed amplitude response measured over the Reynolds-number range of (1100 Re 6300) is significantly different from numerical predictions and other experimental results recorded at significantly lower Reynolds numbers

    Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder

    Get PDF
    The present experimental investigation characterises the dynamic response and wake structure of a sinusoidally rotating circular cylinder with a low mass ratio (defined as the ratio of the total oscillating mass to the displaced fluid mass) undergoing cross-stream flow-induced vibration (FIV). The study covers a wide parameter space spanning the forcing rotary oscillation frequency ratio

    Disorder raises the critical temperature of a cuprate superconductor

    Full text link
    With the discovery of charge density waves (CDW) in most members of the cuprate high temperature superconductors, the interplay between superconductivity and CDW has become a key point in the debate on the origin of high temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order, or more elusive pair-density wave (PDW). Here we have used proton irradiation to induce disorder in crystals of La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and observed a striking 50% increase of TcT_\mathrm{c} accompanied by a suppression of the CDW. This is in clear contradiction with the behaviour expected of a d-wave superconductor for which both magnetic and non-magnetic defects should suppress TcT_\mathrm{c}. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875_{1.875}Ba0.125_{0.125}CuO4_4. Using tunnel diode oscillator (TDO) measurements, we find evidence for dynamic layer decoupling in PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu5_5Ir4_4Si10_{10}.Comment: 10 pages, 7 figure

    Differentiation and Protective Capacity of Virus-Specific CD8

    Get PDF
    Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche. Chronic infections often cause T cell dysfunction, but how noroviruses (NV) evade immunity is unknown. Tomov et al. show that gut-resident T cells against NV remain functional but ignorant of chronic viral replication, suggesting that NV persists in an immune-privileged enteric niche. © 2017 Elsevier Inc

    Three dimensional numerical relativity: the evolution of black holes

    Full text link
    We report on a new 3D numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50Mt=50M, where MM is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an ``apparent horizon locking shift'' can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5\% throughout the evolution with our techniques and current resolution.Comment: 35 pages, LaTeX with RevTeX 3.0 macros. 27 postscript figures taking 7 MB of space, uuencoded and gz-compressed into a 2MB uufile. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ and mpeg simulations at http://jean-luc.ncsa.uiuc.edu/Movies/ Submitted to Physical Review
    • …
    corecore