6,179 research outputs found

    Alien Registration- Gilbert, John C. (Fairfield, Somerset County)

    Get PDF
    https://digitalmaine.com/alien_docs/9541/thumbnail.jp

    Comparison and analysis of energy consumption in typical Iowa swine finishing systems

    Get PDF
    Fossil fuel use in agriculture is an increasingly important topic of concern. Iowa is the largest swine producing state in the United States. A systems analysis was performed to evaluate energy use in deep bedded hoop and confinement swine finishing systems for typical Iowa conditions. Energy use for feed production, facility operation, bedding production, manure application, and swine management were analyzed and the use of on-farm versus off- farm feed processing was compared. Energy for feed required 68 to 82% of the overall energy use. The hoop system required an average of 3.6% less overall energy and 47% less non-feed energy than the confinement system. On-farm feed processing reduced the overall energy an average of 9.5% when compared to off-farm feed processing. 774 MJ of non-solar energy was required to produce 104.5 kg of gain for a pig raised in a deep bedded hoop system with on-farm feed processing while 879 MJ was required in a confinement system with off-farm feed processing. Development of low external input integrated cropping and swine production systems will be key to reducing energy use in swine finishing systems

    Stool consistency as a major confounding factor affecting microbiota composition : an ignored variable?

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of BMJ Publishing Group for personal use, not for redistribution. The definitive version was published in Gut 65 (2016): 1-2, doi:10.1136/gutjnl-2015-310043.2016-07-1

    A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Get PDF
    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement

    Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness.

    Get PDF
    UnlabelledWe analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candida taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a "commensal lifestyle." However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.ImportanceDuring critical illness, the normal gut microbiota becomes disrupted in response to host physiologic stress and antibiotic treatment. Here we demonstrate that the community structure of the gut microbiota during prolonged critical illness is dramatically changed such that in many cases only two-member pathogen communities remain. Most of these ultra-low-membership communities display low virulence when grouped together (i.e., a commensal lifestyle); individually, however, they can express highly harmful behaviors (i.e., a pathogenic lifestyle). The commensal lifestyle of the whole community can be shifted to a pathogenic one in response to host factors such as opioids that are released during physiologic stress and critical illness. This shift can be prevented by using compounds such as Pi-PEG15-20 that interrupt bacterial virulence expression. Taking the data together, this report characterizes the plasticity seen with respect to the choice between a commensal lifestyle and a pathogenic lifestyle among ultra-low-diversity pathogen communities that predominate in the gut during critical illness and offers novel strategies for prevention of sepsis

    Comparative genetics of Enterococcus faecalis intestinal tissue isolates before and after surgery in a rat model of colon anastomosis.

    Get PDF
    We have recently demonstrated that collagenolytic Enterococcus faecalis plays a key and causative role in the pathogenesis of anastomotic leak, an uncommon but potentially lethal complication characterized by disruption of the intestinal wound following segmental removal of the colon (resection) and its reconnection (anastomosis). Here we hypothesized that comparative genetic analysis of E. faecalis isolates present at the anastomotic wound site before and after surgery would shed insight into the mechanisms by which collagenolytic strains are selected for and predominate at sites of anastomotic disruption. Whole genome optical mapping of four pairs of isolates from rat colonic tissue obtained following surgical resection (herein named "pre-op" isolates) and then 6 days later from the anastomotic site (herein named "post-op" isolates) demonstrated that the isolates with higher collagenolytic activity formed a distinct cluster. In order to perform analysis at a deeper level, a single pair of E. faecalis isolates (16A pre-op and 16A post-op) was selected for whole genome sequencing and assembled using a hybrid assembly algorithm. Comparative genomics demonstrated absence of multiple gene clusters, notably a pathogenicity island in the post-op isolate. No differences were found in the fsr-gelE-sprE genes (EF1817-1822) responsible for regulation and production of collagenolytic activity. Analysis of unique genes among the 16A pre-op and post-op isolates revealed the predominance of transporter systems-related genes in the pre-op isolate and phage-related and hydrolytic enzyme-encoding genes in the post-op isolate. Despite genetic differences observed between pre-op and post-op isolates, the precise genetic determinants responsible for their differential expression of collagenolytic activity remains unknown
    corecore