20 research outputs found

    Space charge in dielectrics: Old theories and new measurements

    Full text link
    In this opening address, I would like to take the opportunity to show the basic principles on which the new generation of "space charge" measurement systems operate. I would like to demonstrate their versatility, they can measure much more than just space charge, and I would also like to mention some problems! I will show some results for two materials, epoxy resins and cross-linked polyethylene. Having dealt with the two "M"s of the DMMA, I will finish with a few notes on Applications

    Space charge in dielectrics: old theories and new measurements

    No full text
    In this opening address, I would like to take the opportunity to show the basic principles on which the new generation of "space charge" measurement systems operate. I would like to demonstrate their versatility, they can measure much more than just space charge, and I would also like to mention some problems! I will show some results for two materials, epoxy resins and cross-linked polyethylene. Having dealt with the two "M"s of the DMMA, I will finish with a few notes on Applications

    Internal Charge Behaviour of Nanocomposites.

    Full text link
    The incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described. It is shown that the use of nanometric particles results in a substantial change in the behaviour of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers. A variety of diagnostic techniques (including dielectric spectroscopy, electroluminescence, thermally stimulated current, photoluminescence) have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act co-operatively with the host structure and cease to exhibit interfacial properties leading to Maxwell-Wagner polarization. It is postulated that the particles are surrounded by high charge concentrations in the Gouy-Chapman-Stern layer. Since nanoparticles have very high specific areas, these regions allow limited charge percolation through nano-filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accrue from the nano-formulated material. An optimum loading of about 10% (by weight) is indicated

    The Role of Local Space Charge Concentrations in Producing Branched Tree Structures

    Full text link
    Electrical trees are branched damage structures produced in polymeric insulation subject to high divergent fields. The density of branching ranges from a sparse form like a tree in winter to a dense compact form like a bush. This variation in form is significant as the bush structure occurs at higher voltages but grows slower. We present here a deterministic model for the formation of electrical trees based on damage produced by charges injected into the polymer from discharges taking place within the gas-filled tubules of the tree. A number of processes within the mechanism cause the space charge fields to fluctuate chaotically, and this is held to be responsible for the branching that is observed. Different tree shapes are found depending on whether or not injected/extracted charges reach a kinetic energy high enough for damage only at a few tree tips or everywhere around the tree periphery

    Discharges, Space Charge, and the Shape of Electrical Trees

    Full text link
    The movement of residual positive charges along the walls of tree tubules and into the surrounding polymer is a critical determining factor in the shape (bush or branch) of electrical trees. Positive charge that has a higher mobility along tubule walls promotes single discharges propagating to the tree tip. Lower mobility positive wall charge tends to more, but perhaps smaller, discharges. The former may favour branch tree growth, the latter bush trees. Spread out positive wall charge may occur when there are a number of discharges per half cycle. The resulting damage may favour bifurcation (transverse extension)

    Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers

    Full text link
    The paper presents results of dielectric spectroscopy and space charge (PEA) measurements on epoxy resin filled with 10% w/w micro- and nano- sized particles of TiO2, Al3O2 and ZnO. The results appear to show that the material from which the nano-particle is made is not highly significant in influencing these results. The results support the proposition that the dielectric properties of such nano-filled composites are controlled by Stern-Gouy-Chapman layers (“interaction zones”) around the particles

    Photoluminescence, recombination induced luminescence and electroluminescence in epoxy resin.

    Full text link
    Dielectric breakdown of epoxies is preceded by light emission, or so-called electroluminescence, from the solid-state material. Very little is known about the luminescence properties of epoxies. The aim of this paper is to derive information that can be used as a basis to understand the nature of the excited states and their involvement in electrical degradation processes. Three different kinds of stimulation were used to excite the material luminescence. Photoluminescence was performed on the base resin, the hardener and the cured resin. Luminescence excited by a silent discharge has been analysed to identify which of the luminescent centres are optically active upon the recombination of electrical charges and could therefore act as charge traps. Finally, the electroluminescence spectrum has been acquired and compared with the previous ones. Although the identification of the origin of these emissions is far from being complete, it has been found that the photoluminescence from the cured resin is due to in-chain chromophores, which acts as trapping centres. The excited states involved in photoluminescence also seems to be involved in electroluminescence, but other components are detected as well, which could be due to the degradation of the resin molecule under the effect of the electric stress

    Electric field criteria for charge packet formation and movement in XLPE.

    Full text link
    The formation of space charge packets in XLPE (Cross-linked polyethylene) tapes from unaged cable insulation has been studied utilising the pulsed electro-acoustic (PEA) technique. The 150 m thick sheets were studied under constant applied dc field of 120 kV/mm at a temperature of 20 C for a period of 48 hours. After an inception period of about 3.5 hours, during which heterocharge accumulates at the anode and increases the local field there, a sequence of positive charge packets were observed to transit the sample starting from near the anode. Calculation of the internal field showed that the packets required a field of 140 kV/mm for their initiation. Reduction of the applied field step-wise from 120 kV/mm to 80 kV/mm indicated that the charge packet would keep moving as long as the local field at its front exceeded 100 kV/mm, but with a reducing magnitude. A return to an applied field of 120 kV/mm confirmed that the local field required to initiate a new packet was in excess of 135 kV/mm. The results are discussed in terms of current theories of charge packet formation. The first packet appears to be a moving front of field ionisation. The generation of subsequent packets is governed by the field at the anode and the balance of charge injection and extraction process, which occur there. The nature of the negative charges produced at the ionisation front is not clear, but they are unlikely to be electrons

    Statistical Analysis of Partial Discharges from Electrical Trees Grown in a Flexible Epoxy Resin

    Get PDF
    Electrical treeing is a long-term degradation mechanism in polymeric insulation, which can lead to electrical failure of HV insulation systems. The rate at which trees grow across the insulation depends on the PD activity occurring within them and hence the detection of the onset of electrical treeing could be established by PD monitoring. In this paper, a statistical analysis of the partial discharges detected during the growth of trees in an epoxy resin will be reported. The aim of this work was to provide additional insight into the physical mechanisms that lead to the observed fluctuations in the partial discharge activity. The results demonstrate interesting correlations between a number of statistical parameters, such as average discharge magnitude and standard deviation in the partial discharge amplitudes. These correlations could also be related to physical parameters such as the applied voltage magnitude and the measured power dissipation due to the partial discharges occurring during tree growth. The implications of this work for deterministic methodologies for the simulation of tree growth as well as for condition monitoring using feature recognition strategies for the early detection of tree growth will be discussed
    corecore