36 research outputs found

    Analysis of Dynamic Congestion Control Protocols: A Fokker-Planck Approximation

    Get PDF
    We present an approximate analysis of a queue with dynamically changing input rates that are based on implicit or explicit feedback. This is motivated by recent proposals for adaptive congestion control algorithms [RaJa 88, Jac 88], where the sender\u27s window size at the transport level is adjusted based on perceived congestion level of a bottleneck node. We develop an analysis methodology for a simplified system; yet it is powerful enough to answer the important questions regarding stability, convergence (or oscillations), fairness and the significant effect that delayed feedback plays on performance. Specifically, we find that, in the absence of feedback delay, the linear increase/exponential decrease algorithm of Jacobson and Ramakrishnan-Jain [Jac 88, RaJa 88] is provably stable and fair. Delayed feedback on the other hand, introduces oscillations for every individual user as well as unfairness across those competing for the same resource. While the simulation study of Zhang [Zha 89] and the fluid-approximation study of Bolot and Shanker [BoSh 90] have observed the oscillations in cumulative queue length and measurements by Jacobson [Jac 88] have revealed some of the unfairness properties, the reasons for these have not been identified. We identify quantitatively the cause of these effects, via-a-vis the systems parameters and properties of the algorithm used. The model presented is fairly general and can be applied to evaluate the performance of a wide range of feedback control schemes. It is an extension of the classical Fokker-Planck equation. Therefore, it addresses traffic viability (to some extent) that fluid approximation techniques do not address

    THE DOMAIN DECOMPOSITION METHOD FOR MAXWELL'S EQUATIONS IN TIME DOMAIN SIMULATIONS WITH DISPERSIVE METALLIC MEDIA

    Get PDF
    The domain decomposition method based on overlapping grids is developed to solve the two-dimensional Maxwell equations in the time domain. The finite difference schemes for rectangular and polar coordinate systems are presented. Since interpolation plays a crucial role in our method, the Newton and the Fourier interpolation methods are surveyed in detail. The computational studies of the electromagnetic wave propagation in free space and the back-scattering by a perfect electric conducting object of a circular shape are performed to test the accuracy, the convergence, and the efficiency of our method. Moreover, we give a methodology to model dispersive media in time domain simulations by introducing Drude conductivity in the constitutive equations. The problem of light scattering by metallic nanoparticles is solved, and its results show that our algorithm is efficient and reliable in capturing the small scale phenomena.open

    The Emergence and Evolution of the Multidimensional Organization

    Get PDF
    The article discusses multidimensional organizations and the evolution of complex organizations. The six characteristics of multidimensional organizations, disadvantages of the successful organizational structure that is categorized as a multidivisional, multi-unit or M-form, research by the Foundation for Management Studies which suggests that synergies across business divisions can be exploited by the M-form, a team approach to creating economic value, examples of multidimensional firms such as PricewaterhouseCoopers, and a comparison of various organization types including the matrix form are mentioned

    Option Pricing under the Variance Gamma Process

    Full text link

    High Order Accurate Schemes for Imcompressible Viscous Flow

    No full text

    On the Folded Leapfrog Example: Estimates at a Point for Solutions of Finite Difference Schemes

    No full text

    A Convergence Theorem for Chaotic Asynchronous Relaxation

    No full text

    Cardinal Series Interpolation to Nonuniform Grids

    No full text
    corecore