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Abstract 
We present an approximate analysis of a queue with dynanlically changing input rates 

that are based on implicit or explicit fec(l1,nck. This is motivated by recent proposals for 
adaptive congestion control a.lgorit11111s [RaJa SS. Jac 881, where the sender's window size 
at the transport level is acljustecl basecl on perceived congestion level of a bottlellecli node. 
We develop an analysis methodolog!! for a 5implified system; yet it is powerful enough to 
answer the import ant cluest ions regarding s t ahili ty, convergence (or oscillations), fairness 
and the significant effect that delayed feecll~~cli plays on performance. Specifically, we find 
that, in the absence of feedbacli delay. the linear increase/exponential decrease algorithm 
of Jacobson and Ramalirishnan-Jain [Jac SS. RaJa 881 is provably stable and fair. Delayed 
feedbacli, on the other hand, introcluces oscillations for every  individual user as well as 
unfairness across those competing for the same resource. While the simulation study of 
Zhang [Zha 891 and the fluid-approsimatio study of Bolot and Shankar [Bosh 001 have 
observed the oscillations in cumulative quc.ile length and ineasurements by Jacobson [Jac 
SS] have revealed some of the unfairness properties. the reasons for these have not been 
identified. We identify qmantita.tzuely the cm,trse of the these effects, vis-a-vis the system 
parameters and properties of the algorithm used. 

The model presented is fairly general and can be applied to evaluate the performance 
of a wide range of feedbacli control schemes. It is an estension of the classical Folilcer- 
Plallcli equation. Therefore, it aclclresses traffic variability ( to  sonle estent) that fluid 
approximation techniclues do not aclclress. 

We investigate the performance of congestion control protocols that dynamically 
change input rates based on feedl~acli information received fro111 the l~et \~o~-l i .  This is 
motivated by proposals for adaptive congestion control algorithms [Jac SS, RaJa 88,90], 
ivhere the sender's ~vinclow size at thc transport layer is adjusted based on perceived con- 
gestion level of a bottlellecli node. 

Demers et. al. [DeI<eSh SO] report a sinlulation study that compares the Jacobson and 
Ramalirishnan-Jain algorithms [Jac 88. RaJa S8,90] vis-a-vis scheduling cliscipli~les used in 
intermediate gateways. Zhang [Zhang S0] compares the TCP protocol, urhich incorporates 
the Jacobson algorithm, to her Virtual Clocli Protocol. In there, she reports some interest- 
ing (albeit undesirable) oscillatory properties of the Jacobson algorithm. She also observes 
that connections with larger number of hops receive a poorer share of an intermediate 
resource than those with a smaller number of hops. Jacobson had also reported this in his 
~neasuremellts [Jac 883. Bolot and Shallkar [Bosh 901 have recently studied the behavior of 
the Ramakrishnan-Jail algorithm using a fluid approxi~nation model and they too observe 
the oscillatory ch&acteristics. Recently, some interesting studies have been reported by 
Mitra and Seery [IvIiSe 90, hiit 901 and Shenlier [She 901. bIitra and Seery have developed 
a new feedbacli based dynamic willclow adjustment algorithm based on asymptotic analy- 
sis of queueing nett~orlis, rvllile Sllenker has studied some intrinsic properties of feedbacli 
l~ased flow control. - 

In this study, we develop, from first principles, a Fokker-Plancli equation for the 
evolution of the joint probabi1it~- tlensity function of queue length and arrival rate at  



the bottleneck node. This approsimates the t ~ a ~ n s i e n t  behavior of a queue subjected to 
adaptive rate-control. TVe then seeli ansjvers to clllestions regarding stabi l i ty  (or oscillations) 
and fairness of a particular aclaptivc algorithm. WTe also investigate the effect of delayed 
feedback on performance. 

We find that, in the absence of fcedl~aclc delay, senders using the Jacohson- 
Ramalirishnan-Jain (or JRJ )  -4lgorithnl [.Sac 86. RaJa 8S,90] (or rather, an ecluivalent 
rate-based algorithm) converge to an er~ililil~ritlm. Further, this algorithm is f (~ ir  in that 
all sources sharing a resource get an ecll~nl share of the resource if they use the same pa- 
rameters for adjusting their rates. The exact share of the resource that different sources 
get when they use different parameters is also determined. 

-4 delay in the feeclbacli information iiltrocluces cyclic behavior. If different sources 
get the feedback information after d ~ f f e r r n t  ijmoul~ts of clelay, then the algorithm may also 
be unfair ,  i.e., the sources may get uneqllal throughput. These results strengthen the 
observations in previous studies ancl also identify the unclerlying reasons. For instance. if 
the adaptive algorithm is linear-increase/csponeitial-decrease, then the oscillations are due 
to delayed feeclbacli. However, if the aclagti~e algorithm is linear-increase/linear-decrease, 
then the oscillations coulcl be due to both the algorithm itself and the delay in the feedbacli 
path. -4lso unfairness is partly due to the larger (feedbacl;) delay suffered by the longer 
conllections as compared to the shorter ones. 

The rest of the paper is organizeel a s  follonrs. Section 2 presents the model. Section 
3 motivates the analysis methodolog.-. I11 Section 4. a Fo1;ker-Platlilck approximation for 
the time dependent queue behavior is rleri~.ecl. Section 5 discusses the properties of thc 
.JRJ-algorithm when oilly one source is using the resource. Section G investigates the 
properties of the system with multiple iources. Section 7 re-investigates these properties 
in the presence of delayed feedl~acli. Set-tion 8 presents our conclusions. 

2. Model 

The model we have chosen is moti~.atcd 1)y the .Jacol~son-Ramnlirishnan-.Jail1 .4lgo- 
rithm for window adjustment. In the .JR J algorithm, when congestic~n is detected (by 
implicit or explicit feeclback), the n-inelon. size is decreased m.t~itzplicatzvely. Ho~veves, ~vhen 
there is no congestion. it is increased lin eo,rl:tj - to probe for more bandwidth, i.e., 

i :  if congested; 
((, + n:  if not congestecl. 

While this rnakes good intuitive sense. i t  is far from clear as to what v a l t ~ e s  the 
parameters a ancl d should take. F~lrther. it is not provably clear if the algorithm is fair or 
stable1 and if so. u n d e r  what circsrnstan,cc.~. 

To understand the behavior of d>-narnic congestion control algorithms, we study a 
queueing system with a time varying inlx~t rate.  The latter is adjusted periodically basecl 

. 
1 ,4n algorithm is fair if everybodjr gets a ofair' share of the resource (Fair share and equal 

share are synonymous if all the demands arp c c l ~ ~ a l ) .  Stability, 011 the other hand, implies that  the 
algorithm converges to a particular va111e. 



on some feedbacli that the end-point recei.c-es about the state of the queue. We are inter- 
ested in the time evolution of the queue length density function. 

Let us assume that we are changing the arrival rate, X(t), based on the current queue 
length. Q(t ) ,  at some hottlenecli noclc. .A11 csaillple ac1apti.i-e control a.lgorithm could be 

where is some target queue length. Co and C1 are positive constants. 
Equation 2 models a linear zncrease in X for Q ( t )  5 q and an exponential  decrease 

in it for Q(t) > ?. It is therefore the rate-analogue of the dynamic nrinclow adjustment 
nlgorithln given 11y Equation 1. For purposes of generality hoxvever , we shall deno te 

g ( .  ) can be viewed as a generic rate-control algorithm. 
In the following section, we motivate the n~ethodology chosen. The method adopted 

can not only leacl to a hetter theoretical lunclerstanding of a. key problem but also he useful 
in solving other problems that might inl-olw some for111 of feedback. 

3. Methodology 

To analyze the effect of Ecluation (4 ) .  Bolot and Shankar [Bosh 901 llat-e used two 
separate differential ecluations. one for tllct clllclle length. Q(t ) ,  and another for the arrival 
rate X ( t ) .  &( t )  depends on X(t )  as follon-s: 

~vhere p is the inean service rate. c l X ( t  )/(It i:, given by Equation 2. These are then coupled 
together, i.e., X(t )  drives the differential ccjuntion for Q ( t )  ancl vice-versa. Their model 
assumes that Q ( t )  ancl X(t) are both cleternlinistic. 

Suppose, l~olvever that Q( t )  were a random variable and one atte~npts to characterize 
the time evolution of this process. C'on5ider the classical Fokker-Plancl;, or diffusion, 
ecluation in one-climension: 

~vhere f ( t ,  q) is the density fiunc.tion of the queue length at time t ,  (X(t,  q) - 11)  

an'd a2( t ,  q )  are the instantaneous mean and variance of the queue gro~vth rate given the 
queue length is q.  Now, if this equation is t o  he extended for the congestion-control problem 
at hand, how should the,ecluation for X l)e esl>ressed so that the control part is properly 
reflected? It turns out that one cannot ilse ;I c-oi~plecl set of equations (one for the density 
and one for the control) at  all. 



t 
Figure 1: Quel~e le~lgth trnjec.tory as a function of time. 

To see this, suppose that Q ( t )  n.ercA ;I random variable ancl say, we were observing 
the process {(Q(t) ,  X(t))} as time progrc~sctl (see Figure 1). Given some initial values 
(Q(O), X(O)), let the queue length at tinle t 1,e Q( t )  = q ,  for soille q .  At  this point. tlle 
value of X(t) is depeildent on not just tllc c ~ ~ r r e n t  value of q ,  but also 011 the sc~rnple  patll. 
of Q ( s ) ,  0 5 s 5 t .  Intermediate values of thc qlieue length affects X l~ecause of Equation 
2 and since the sample path of Q is random. X ( t )  itself is a random l~nrzable. One canilot 
therefore couple t lle two ecluat ions. 

TVe hence clloose an alternate rout(>. Let / I  be the average service rate of the queue 
ancl let ~ ( t )  = (X(t) - p )  l)e tlze instantanco~~s cllleue growth rate (nritll the convention that 
~ ( t )  = 0 if Q( t )  = O and X ( t )  < ~ 1 ) .  IT-c rl(lfi11e f ( t .  q. 11) to be the joint probability density 
function of (Q(t ), v(t  ) ) .  Our goal is to ~ui~tlerstand the time dependent behavior of f ( . )  
13asecl on g(.)  and the rariabilities of Q ( t )  i~ntl r/(t). TVe address this in the nest section. 

4. Fokker-Planck approxii~latioll for queue with feedback control 

Suppose that at  time t ,  the queue lengt 1; and queue growt,h rate are given by Q(t ) = @ 
and v(t) = fi. We want to espress t h ~  dcnsity fimction f (t + T ,  q. v )  in terms of f (t. 6. fi).  
TVe assume that variability in u is callse(1 only hy the random sample path of Q and there 
is no 'intrinsic' variability in 11. Then. $1-cn Q(t  + r )  = q ,  ancl some snlall T, 

Let h(t + T, q, vlt, i, f i )  be the conditional probability of the transition betnreen (6.5) 
and (q. v )  in time time (t  ,.t + T ) .  Then 1,y the lniv of total probability, 



The integral over fi in Equation 5 is essentially a delt,a function n.hic11 is zero for all values 
of i/ escept that sa.tisfying Equation 4. We then have 

~vi th the understanding t11a.t fi ancl r /  are related by Ecjuat,ion 4. 
No\v, let us further assume that tllv central linlit theorem (approsinlately ) holds for 

the conditional density function / I ( . ) .  i . ~ . .  

n-here a2 is the variance of Q. \;alitlity of this assumption is key to the Foklier-Planck 
approximation that follo~vs.~ 

Combining Ecluations G ancl i gives 

To clerive the differential ecluation of .f'( . ) with respect to time, ~x-e subtract f ( t ,  (I, u )  from 
130th sides, divide by -i- and let T -+ 0. vsing ( l i / /du = 1 - g,r fi-om Ecluation 4. we then 
g-et3 

Let 

-4clding (and subtracting) f ( t ,  q. C )  to (;ant1 from) the right liancl side of this equation, we 
get 

The first integral in Equation 11 is sirnilill to espressions arising in the derivation of the 
standard Folilier-Planck eclua.tion [New GS. Sen. 71. I<le 7G]: 

a 

? higher order moments may be neeclcil to c~spi.css more burstiness in 11. 

3 notation: fi = af /8 t ,  fq  = a8.f/aq. ,fr,,, = iI2,f/bq?- etc. 



'& . 

-4s T t 0,  fi + V. (see Eclua.tion 4) .  so t'llis lwcomes 

The second integral is equal t,o 

Combining Equations 9, 10, 11,  12 ancl 13. and noting that g, f + g  f ,  = ( g f ) , ,  we 11a.ve 

1 .  
. f r  + 11.t-q + i i1.f )I /  = ,02.fqq 

d 

( 1 4 )  

Equation 14 describes the basic eclun tion of motion for the density f~~nct ion  f ( ). 

5. Properties of Algoritli~ll 2 

We now investigate the properties of .4lgorithm 2 in conjunction \irith Equation 14. 
For the purposes of an intuitive cliscussion. we suppress the a' term in Equation 14 ant1 
study a reduced system. We therefore hn~rc. n hyperbolic partial differential equation whose 
properties can be explorecl by studying it5 ch,c~,r(~cteristics.  TVe will address the effects of 
c2 heing positive at  the end of this sertion. The characteristics are the falnily of curl-es 
satisfying 

This is ecluivalent to 
dcl dX - = X - / I  ancl - = g 
cl t dt 

Consider the q - v diagram of Figllrc '3. The n.-axis represents the queue length, Q ,  
and the y-axis represents the instantaneol~s queue growth rate, v. TIVO lines correspollcling 
to (2 = and v = 0,  shon-n by c1ottc.d lines. divide the q - 11 plane into four cluaclrants. 
The behavior of Equation 11 is I->& descsil>ecl 11y considering each cluadrant separately. 

First consider Quadrant I in Figi~rc 5.  This corresponds to u > 0  (i.e., X > p  ) and 
Q < g. Since X > p ,  the znstnntnneo~r.e rlileile length at  any point in this cluadrant is 
increasing. The instantaneous LI is also increasing because dX/clt  = Co > 0. The resx l tan t  
direction of instantaneous motion (i.e.. the characteristic) is increasing in both Q and i/ 

as shown in the figure. Notice that Ecluation 14 confirms this intuition: the coefficient of 
f q  which represents the Q-drzft  is 11 and this is positive in Quadrant I; the coefficient of f,, 
which represents the Y - d r i f t  is g ( . )  = +C',, 11-11ic.h is positive as well. The characteristzc is 
the resultant of these tn7o drifts. 

Nest, consider Quadrant 11. Here (2 > ancl Y > 0  (i.e., X > k t ) .  From Equation 14, 
the Q-drift is again positive since 11 > 0. Hr)n.e~-er. the I/-drift is now negative because 



Figure 2: Characteristics and their directions. 

Figure 3: Covergent Spiral 



d X / d t  is -CIA for Q > q. The characteristic. which is the resultant of these two clrifts, is 
increasing in Q but decreasing in I /  as s h o ~ ~ n  in Figure 2. 

\We can siinilarly check that ill Qi~ndrant 111, both the Q-drift and the v-drift are 
negative ~vhile in Quadrant IV, the Q-drift is negative but the v-drift is positive. The 
directions of individual drifts and the c11;irncteristics are shown in the figure. . 

Now, suppose we were to trace the path of a -particle' that obeys both Equation 14 and 
Equation 2. This path mill follow the cllarncteristic. Therefore, from the above argument, 
it is clear that the trajectory would either be a c y c l e  or a spzrak: the latter could be one 
that converges inwards or  diverge,^ o t~.t ward. F~lrther, a con~~ergent spiral could home in to 
either a l imi t  point or a l imi t  c y c l e .  Theorem 1 1)elo~v says that the path of any particle 
obeying Ecluatiolls 2 and 14 (ignoring the rr2 term) is a convergent cycle with the limit 
poin,t Q = q ancl 11 = 0. Notice that this is esactly the desired point of operation of the 
adaptive algorithln. 

Theorelm 1: 
If a? = 0 in Equation 14, the11 =Ilgoritllm 3 converges in the limit. The limit point is 

(I =? ,A  = p .  

Pro0 f:  
l i e  have 

and 

Since p, the avera,ge service rate. is nc-)t c-hanging ~ i t h  time. 

Non7, suppose that at time t = 0. X is some value Xo which is less than p ancl q is (7 
(see Figure 3). From Ecluation 17. we harc. 

d ' q  --  - C'". 
d t 2  

Its solution is 

-After a certain time, sa.y t l ,  the characteristic hits q = q line again. Let X be XI now. For e 
the moment, let us assume that the characteristic did not hit the q = 0 boundary, so that 
Equation 18 is valid all the way up t o  t = t 1 .  
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