3 research outputs found
Medical Data Analytics and Wearable Devices
Clinical decision-making may be directly impacted by wearable application. Some people think that wearable technologies, such as patient rehabilitation outside of hospitals, could boost patient care quality while lowering costs. The big data produced by wearable technology presents researchers with both a challenge and an opportunity to expand the use of artificial intelligence (AI) techniques on these data. By establishing new healthcare service systems, it is possible to organise diverse information and communications technologies into service linkages. This includes emerging smart systems, cloud computing, social networks, and enhanced sensing and data analysis techniques. The characteristics and features of big data, the significance of big data analytics in the healthcare industry, and a discussion of the effectiveness of several machine learning algorithms employed in big data analytics served as our conclusion
Speech signal analysis and pattern recognition in diagnosis of dysarthria
Background: Dysarthria refers to a group of disorders resulting from disturbances in muscular control over the speech mechanism due to damage of central or peripheral nervous system. There is wide subjective variability in assessment of dysarthria between different clinicians. In our study, we tried to identify a pattern among types of dysarthria by acoustic analysis and to prevent intersubject variability. Objectives: (1) Pattern recognition among types of dysarthria with software tool and to compare with normal subjects. (2) To assess the severity of dysarthria with software tool. Materials and Methods: Speech of seventy subjects were recorded, both normal subjects and the dysarthric patients who attended the outpatient department/admitted in AIMS. Speech waveforms were analyzed using Praat and MATHLAB toolkit. The pitch contour, formant variation, and speech duration of the extracted graphs were analyzed. Results: Study population included 25 normal subjects and 45 dysarthric patients. Dysarthric subjects included 24 patients with extrapyramidal dysarthria, 14 cases of spastic dysarthria, and 7 cases of ataxic dysarthria. Analysis of pitch of the study population showed a specific pattern in each type. F0 jitter was found in spastic dysarthria, pitch break with ataxic dysarthria, and pitch monotonicity with extrapyramidal dysarthria. By pattern recognition, we identified 19 cases in which one or more recognized patterns coexisted. There was a significant correlation between the severity of dysarthria and formant range. Conclusions: Specific patterns were identified for types of dysarthria so that this software tool will help clinicians to identify the types of dysarthria in a better way and could prevent intersubject variability. We also assessed the severity of dysarthria by formant range. Mixed dysarthria can be more common than clinically expected