292 research outputs found

    Population structure of king mackerel (Scomberomorus cavalla) around peninsular Florida, as revealed by microsatellite DNA

    Get PDF
    A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary

    Biological uptake and reversible scavenging of zinc in the global ocean

    Get PDF
    Zinc (Zn) is a key micronutrient for marine phytoplankton, with a global distribution that is similar to silicic acid. The processes that govern this relationship, despite the very different biological cycling of Zn and silica, remain poorly understood. Here, we use diagnostic and mechanistic models to show that only a combination of Southern Ocean biological uptake and reversible scavenging of Zn onto sinking particles can explain the observations. The distinction between organic and adsorbed Zn can also reconcile the vertical distribution and mass balance of Zn isotopes, which previously appeared at odds. This holistic understanding explains the Zn deficiencies observed throughout the low-latitude ocean and implies a greater sensitivity of the marine Zn cycle to climate-driven changes in organic matter cycling than previously recognized

    Heart Rate Variability Predicts Cell Death and Inflammatory Responses to Global Cerebral Ischemia

    Get PDF
    This study examines the relationship between autonomic functioning and neuropathology following cardiac arrest (CA) in mice. Within 24 h of CA, parasympathetic cardiac control, as indexed by high frequency (HF) heart rate variability, rapidly decreases. By day 7 after CA, HF heart rate variability was inversely correlated with neuronal damage and microglial activation in the hippocampus. Thus, by virtue of its sensitivity to central insult, HF heart rate variability may offer an inexpensive, non-invasive method of monitoring neuropathological processes following CA. The inverse linear relationships between heart rate variability and brain damage after CA also may partially explain why low heart rate variability is associated with increased morbidity and mortality in myocardial infarction patients

    LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    Get PDF
    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance

    Action Group Reports

    Get PDF
    Action Group Report

    The Early Stages and Natural History of Antirrhea Adoptive Porphyrosticta (Watkins, 1928) in Eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae)

    Get PDF
    Here we describe the immature stages and ecological associations of Antirrhea adoptiva porphyrosticta Watkins, 1928 (Lepidoptera:Nymphalidae:Morphinae). The cloud forest bamboo, Chusquea scandens Kunth (Bambusoidea: Poaceae), serves as the larval food plant for this butterfly in eastern Ecuador, the first hostplant record for Antirrhea outside the family Arecaceae. The larvae of A. adoptiva porphyrosticta are superficially similar to those of other Antirrhea species. We also provide observations on adult and larval behavior. Caterpillars of this butterfly species are parasitized by tachinid flies, as well as by Ichneumonidae and a newly described braconid wasp

    New Crayfish Species Records from the Sipsey Fork Drainage, Including Lewis Smith Reservoir (Alabama, USA): Native or Introduced Species?

    Get PDF
    As part of a study of aquatic faunal community changes along riverine-lacustrine transition zones upstream of Lewis Smith Reservoir in northwest Alabama, USA, we collected crayfish from 60 sites in the Sipsey Fork, Brushy Creek, and selected tributaries (Black Warrior River system). After finding two unexpected and possibly-introduced crayfish species, we expanded our investigation of crayfish distributions to include crayfish obtained from stomachs of black bass ( Micropterus spp.) caught at seven sites in the reservoir. To explore what crayfish species were in the drainage historically, we examined museum databases as well as stomach and intestinal contents of a variety of preserved fishes that were caught in the Sipsey Fork and Brushy Creek drainages upstream of the reservoir in the early 1990’s. Of the seven crayfish species collected, one, Orconectes ( Procericambarus ) sp. nr ronaldi , was not previously reported from Alabama, and another, O. lancifer , was not reported from the Black Warrior River system prior to the study. Three are known or possibly introduced species. Upstream of the reservoir, the native species Cambarus obstipus, C. striatus , and O. validus were common. The same three species were found in fish collected in the 1990’s. Orconectes perfectus was found only in the reservoir but may be native to the drainage. Orconectes lancifer was in the reservoir and in stream reaches influenced by the reservoir. Evidence points to O. lancifer being introduced in the drainage, but this is uncertain. Orconectes sp. nr ronaldi was found in a relatively small portion of Brushy Creek and its tributaries, in both flowing and impounded habitats, and may be introduced. Orconectes virilis is introduced in Alabama and was found only in stomachs of fish collected in the reservoir

    Segmented Aperture Interferometric Nulling Testbed (SAINT) II: Component Systems Update

    Get PDF
    "This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interfer-ometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror withthe Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatoriesneeded to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars inthe quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNCwavefront control optics and mechanisms towards repeating narrowband results are described. A narrative isprovided for the design of new optical components aimed at enabling broadband performance. Initial work withthe hardware and software interface for controlling the segmented telescope mirror is also presented.
    corecore