99 research outputs found

    Simulation Programs in Financial Institutions

    Get PDF
    Christine Stewart is Manager of Educational Services for Olson Research Associates. Inc., Greenbelt, Maryland. John A. Haslem is Professor and Chairman of Finance at the University of Maryland

    Mutual Funds and the New Total Expense Ratio

    Get PDF

    An Analysis of Overhead-Expense Measures and Relative Bank Profitability*

    Get PDF
    John A. Haslem is Professor of Finance and James P. Bedingfield is an Associate Professor of Accounting at the University of Maryland. A. J. Stagliano is an Associate Professor of Accounting at George Mason University

    Bank Funds Management: Interest-Margin Measures and Relative Profitability*

    Get PDF
    John A. Haslem is Professor of Finance in the College of Business and Management at the University of Maryland. James P. Bedingfield is an Associate Professor of Accounting in the College of Business and Management at the University of Maryland. A.J. Stagliano is Sutula Professor of Accounting at St. Joseph\u27s University

    An Analysis of Capital Measures and Relative Bank Profitability

    Get PDF
    John A. Haslem is Professor of Finance in the College of Business and Management at the University of Maryland . James P. Bedingfield is an Associate Professor of Accounting in the College of Business and Management at the University of Maryland. A.J. Stagliano is the Edward G. Sutula Professor of Accounting at Saint Joseph\u27s University in Philadelphia

    Germline variants of ATG7 in familial cholangiocarcinoma alter autophagy and p62

    Get PDF
    Funding Information: The authors recognize and appreciate the patients and families who contributed to the current study. We acknowledge the Icelandic Cancer Registry for assistance in the ascertainment of the Icelandic cancer patients. We thank deCODE genetics for access to data and facilities, assistance with data analysis and helpful discussions. This work was supported by the National Institutes of Health [P01HG000205 to SUG and HPJ, 1U01CA15192001-A1 to HPJ, 1U01CA176299 to HPJ, HG006137-07 to HPJ, R01 CA116468NIH to DAJ, 5K08CA166512 to LDN]; Intermountain Healthcare to SUG, JC and HPJ; a Research Scholar Grant from the American Cancer Society [RSG-13-297-01-TBG to JC and HPJ]; Clayville Foundation to HPJ; Gastric Cancer Foundation to HPJ and LDN; the Samuel Waxman Cancer Research Foundation to DAJ; Oklahoma Center for Adult Stem Cell Research (OCASCR) to DAJ; Oklahoma Medical Research Foundation (OMRF) to DAJ; the Conquer Cancer Foundation (Young Investigator Award) to LDN; the Carl Kawaja Foundation to LDN; the Research Fund of Iceland [130230-0529 to ES and MHO, 184861-052 to ES, 184727-051 to MHO]; and a grant from the Icelandic Cancer Society Research Fund to MHO. Publisher Copyright: © 2022, The Author(s).Autophagy is a housekeeping mechanism tasked with eliminating misfolded proteins and damaged organelles to maintain cellular homeostasis. Autophagy deficiency results in increased oxidative stress, DNA damage and chronic cellular injury. Among the core genes in the autophagy machinery, ATG7 is required for autophagy initiation and autophagosome formation. Based on the analysis of an extended pedigree of familial cholangiocarcinoma, we determined that all affected family members had a novel germline mutation (c.2000C>T p.Arg659* (p.R659*)) in ATG7. Somatic deletions of ATG7 were identified in the tumors of affected individuals. We applied linked-read sequencing to one tumor sample and demonstrated that the ATG7 somatic deletion and germline mutation were located on distinct alleles, resulting in two hits to ATG7. From a parallel population genetic study, we identified a germline polymorphism of ATG7 (c.1591C>G p.Asp522Glu (p.D522E)) associated with increased risk of cholangiocarcinoma. To characterize the impact of these germline ATG7 variants on autophagy activity, we developed an ATG7-null cell line derived from the human bile duct. The mutant p.R659* ATG7 protein lacked the ability to lipidate its LC3 substrate, leading to complete loss of autophagy and increased p62 levels. Our findings indicate that germline ATG7 variants have the potential to impact autophagy function with implications for cholangiocarcinoma development.Peer reviewe

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Background: Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The 'Biomes of Australian Soil Environments' (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function. Findings: BASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project's data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the 'Atlas of Living Australia'. Conclusions: Developed within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services

    Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database

    Get PDF
    Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function
    • 

    corecore