26 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Álvaro LĂłpez-GarcĂ­a, Gabriela Lopez-Gonzalez, Zdeƈka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂ­nez-Garza, Jordi MartĂ­nez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂ­nez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂ­a, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂ­r TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂ­s, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiƄska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Corporate Finance for Business

    No full text

    Technical analysis versus market efficiency - a genetic programming approach

    No full text
    In the paper the authors maintain that the prevalence of technical analysis in professional investment argues that such techniques should perhaps be taken more seriously by academics. The new technique of genetic programming is used to investigate a long time series of price data for a quoted property investment company, to discern whether there are any patterns in the data which could be used for technical trading purposes. A successful buy rule is found which generates returns in excess of what would be expected from the best-fitting null time-series model. Nevertheless, this turns out to be a more sophisticated variant of the buy and hold rule, which the authors term timing specific buy and hold. Although the rule does outperform simple buy and hold, it really does not provide sufficient grounds for the rejection of the efficient market hypothesis, though it does suggest that further investigation of the specific conditions of applicability of the EMH may be appropriate.

    A Comparison of an Oligopoly Game and the N-Person Iterated Prisoner's Dilemma

    No full text
    We review and analyze a recently proposed model of an Oligopoly Game. From a theoretical investigation of the payoff scheme, we confirm that it cannot be a true representation of the N -Person Iterated Prisoner's Dilemma. From an empirical investigation of the model's parameters, we show which are crucial to the evolution of cooperation. We compare these results with a separate set of simulations of the abstract NIPD.

    An overview of Indigenous Australian disadvantage in terms of ischaemic heart disease

    No full text
    Indigenous Australians experience poorer health outcomes than non-Indigenous Australians and a significant life expectancy gap exists. Ischaemic heart disease (IHD) represents the leading specific cause of death in Indigenous Australians and is a significant, if not the most significant, contributor to the mortality gap. With this narrative review we aim to describe the burden of IHD within the Indigenous Australian community and explore the factors driving this disparity.A broad search of the literature was undertaken utilising an electronic search of the PubMed database along with national agency databases-the Australian Institute of Health and Welfare (AIHW) and the Australian Bureau of Statistics (ABS).A complex interplay between multiple factors contributes to the excess burden of IHD in the Indigenous Australian population: CONCLUSIONS: In terms of IHD, Indigenous Australians experience disadvantage at multiple stages of the disease process. Ongoing efforts are needed to continue to inform clinicians of both this disadvantage and strategies to assist negating it. Further research is needed to develop evidence based practices which may help reduce this disparity in outcomes

    A Review of Coronary Artery Bypass Grafting in the Indigenous Australian Population

    No full text
    Introduction: Indigenous Australians experience poorer health outcomes than non-Indigenous Australians. Ischaemic heart disease is a leading contributor to the mortality gap which exists between Indigenous and non-Indigenous Australians. Methods: We reviewed the literature in regards to Indigenous Australians undergoing coronary artery bypass grafting (CABG) for management of ischaemic heart disease. Results: Younger patients with higher rates of preventable risk factors constitute the Indigenous Australian CABG population. Indigenous Australian females are over-represented in series to date. High rates of left ventricular dysfunction are seen in the Indigenous CABG cohorts potentially reflecting barriers to medical care or the influence of high rates of diabetes observed in the Indigenous Australian population. The distribution of coronary artery disease appears to differ between Indigenous Australian and non-Indigenous CABG cohorts likely reflecting a difference in the referral patterns of the two population groups with diabetes again likely influencing management decisions. Reduced utilisation of arterial conduits in Indigenous Australian cohorts has been identified in a number of series. This is of particular concern given the younger age structure of the Indigenous Australian cohorts. Indigenous Australian patients suffer excess morbidity and mortality in the longer term after undergoing CABG. Ventricular dysfunction and excess comorbidities in the Indigenous Australian CABG population appear largely responsible for this. Conclusion: Excess morbidity and mortality endured by Indigenous Australians in the longer term following CABG appears largely contributed to by higher rates of ventricular dysfunction and comorbidities in the Indigenous Australian CABG population. Maximising internal mammary artery use and continued focus on strategies to reduce the impact of diabetes, renal impairment and heart failure in the Indigenous Australian population is essential to reduce the mortality gap experienced by Indigenous Australians secondary to ischaemic heart disease
    corecore