857 research outputs found

    Fibers, Geopolymers, Nano and Alkali-Activated Materials for Deep Soil Mix Binders

    Get PDF
    Ordinary Portland Cement (OPC) and Lime (CaO) have traditionally been used as binder materials for Deep Soil Mix (DSM) ground improvement. Research has been conducted into possible alternatives such as pozzolans to reduce reliance on either cement or lime. However, pozzolans still undergo similar calcium-based reactions in the strengthening process. In this review, further alternative binder materials for soil strength development are explored. These recent developments include fiber reinforcement materials, alkali activation methods, nanomaterials and geopolymers, which can potentially achieve equal or improved performance. Research to date has shown that alkali-activated materials and geopolymers can be equivalent or superior alternatives to pozzolanic supplemented cement binders. The case is made for GP cements which potentially produces 80% less CO2 than conventional portland cement during manufacture. One-part AAM and GP cements are a promising substitute for portland cement in DSM. A combined approach which incorporates both Ca and alkali activated/geopolymer types of materials and hence reactions is proposed

    Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    Get PDF
    The experimental and analytical work that was done to establish justification and feasibility for a shuttle middeck experiment involving mass transfer between a gas bubble and a liquid is described. The experiment involves the observation and measurement of the dissolution of an isolated immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble were successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration was accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model was developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity

    Beyond Intuition, a Framework for Applying GPs to Real-World Data

    Full text link
    Gaussian Processes (GPs) offer an attractive method for regression over small, structured and correlated datasets. However, their deployment is hindered by computational costs and limited guidelines on how to apply GPs beyond simple low-dimensional datasets. We propose a framework to identify the suitability of GPs to a given problem and how to set up a robust and well-specified GP model. The guidelines formalise the decisions of experienced GP practitioners, with an emphasis on kernel design and options for computational scalability. The framework is then applied to a case study of glacier elevation change yielding more accurate results at test time.Comment: Accepted at the 1st ICML Workshop on Structured Probabilistic Inference and Generative Modelling (2023

    Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells

    Full text link
    Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established
    corecore