10,775 research outputs found

    Measurement induced quantum-classical transition

    Full text link
    A model of an electrical point contact coupled to a mechanical system (oscillator) is studied to simulate the dephasing effect of measurement on a quantum system. The problem is solved at zero temperature under conditions of strong non-equilibrium in the measurement apparatus. For linear coupling between the oscillator and tunneling electrons, it is found that the oscillator dynamics becomes damped, with the effective temperature determined by the voltage drop across the junction. It is demonstrated that both the quantum heating and the quantum damping of the oscillator manifest themselves in the current-voltage characteristic of the point contact.Comment: in RevTex, 1 figure, corrected notatio

    Ionoluminescence: A New Tool for Nuclear Microprobes in Geology

    Get PDF
    When an ion beam in the energy range of a few MeV/amu impacts on a mineral, visible light can often be observed. This light, induced by energetic ions, is termed ionoluminescence (IL). The intensity and wavelength of the ionoluminescent light provide information concerning the nature of luminescence centers, such as trace substituents and structural defects, found in the mineral. This makes IL a useful complement to other methods of ion beam analysis (IBA), such as particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS), in characterizing geological samples. In the present study, a proton or alpha particle beam was used for the IL excitation and IBA with a nuclear microprobe. The results obtained with IL were compared with those of cathodoluminescence (CL) and photoluminescence (PL)

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    Concurrent adaptation to opposing visual displacements during an alternating movement.

    Get PDF
    It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms

    Electronic polymers in lipid membranes

    Get PDF
    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes

    Powers of Hamilton cycles in pseudorandom graphs

    Full text link
    We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph GG is (Δ,p,k,ℓ)(\varepsilon,p,k,\ell)-pseudorandom if for all disjoint XX and Y⊂V(G)Y\subset V(G) with ∣XâˆŁâ‰„Î”pkn|X|\ge\varepsilon p^kn and ∣YâˆŁâ‰„Î”pℓn|Y|\ge\varepsilon p^\ell n we have e(X,Y)=(1±Δ)p∣X∣∣Y∣e(X,Y)=(1\pm\varepsilon)p|X||Y|. We prove that for all ÎČ>0\beta>0 there is an Δ>0\varepsilon>0 such that an (Δ,p,1,2)(\varepsilon,p,1,2)-pseudorandom graph on nn vertices with minimum degree at least ÎČpn\beta pn contains the square of a Hamilton cycle. In particular, this implies that (n,d,λ)(n,d,\lambda)-graphs with λâ‰Șd5/2n−3/2\lambda\ll d^{5/2 }n^{-3/2} contain the square of a Hamilton cycle, and thus a triangle factor if nn is a multiple of 33. This improves on a result of Krivelevich, Sudakov and Szab\'o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403--426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.Comment: 30 pages, 1 figur

    The General Supersymmetric Solution of Topologically Massive Supergravity

    Full text link
    We find the general fully non-linear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant \mu. If \mu does not take the critical value \mu=\pm 1, these solutions are asymptotically regular on a Poincar\'e patch, but do not admit a smooth global compactification with boundary S^1\times\R. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincar\'e patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole.Comment: Minor correction

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure
    • 

    corecore