24,398 research outputs found

    The dynamical Casimir effect in superconducting microwave circuits

    Get PDF
    We theoretically investigate the dynamical Casimir effect in electrical circuits based on superconducting microfabricated waveguides with tunable boundary conditions. We propose to implement a rapid modulation of the boundary conditions by tuning the applied magnetic flux through superconducting quantum interference devices (SQUIDs) that are embedded in the waveguide circuits. We consider two circuits: (i) An open waveguide circuit that corresponds to a single mirror in free space, and (ii) a resonator coupled to a microfabricated waveguide, which corresponds to a single-sided cavity in free space. We analyze the properties of the dynamical Casimir effect in these two setups by calculating the generated photon-flux density, output-field correlation functions, and the quadrature squeezing spectra. We show that these properties of the output field exhibit signatures unique to the radiation due to the dynamical Casimir effect, and could therefore be used for distinguishing the dynamical Casimir effect from other types of radiation in these circuits. We also discuss the similarities and differences between the dynamical Casimir effect, in the resonator setup, and downconversion of pump photons in parametric oscillators.Comment: 18 pages, 14 figure

    Nonclassical microwave radiation from the dynamical Casimir effect

    Full text link
    We investigate quantum correlations in microwave radiation produced by the dynamical Casimir effect in a superconducting waveguide terminated and modulated by a superconducting quantum interference device. We apply nonclassicality tests and evaluate the entanglement for the predicted field states. For realistic circuit parameters, including thermal background noise, the results indicate that the produced radiation can be strictly nonclassical and can have a measurable amount of intermode entanglement. If measured experimentally, these nonclassicalilty indicators could give further evidence of the quantum nature of the dynamical Casimir radiation in these circuits.Comment: 5 pages, 3 figure

    Local consequences of applying international norms: differences in the application of forest certification in northern Sweden, northern Finland, and northwest Russia

    Get PDF
    Forest certification, developed in the early 1990s, is a process in which independent assessors grant use of the certification label to producers who meet certain environmental and social criteria set for their forest products. This label was quickly seen to offer a market advantage and to signal corporate social and environmental responsibility. This paper focuses on international norms pertaining to environmental and indigenous rights, as manifested in cases of Forest Stewardship Council (FSC)- and Programme for the Endorsement of Forest Certification (PEFC)-compatible certification, and how these norms have been applied domestically and perceived locally in different states. Case studies are drawn from northern Sweden, northern Finland, and three regions in northwest Russia. The studies illustrate that the choice and implementation of certification type depend considerably on national infrastructure and market characteristics and result in substantial differences in the impact that international norms have at the local leve

    Scattering of coherent states on a single artificial atom

    Full text link
    In this work we theoretically analyze a circuit QED design where propagating quantum microwaves interact with a single artificial atom, a single Cooper pair box. In particular, we derive a master equation in the so-called transmon regime, including coherent drives. Inspired by recent experiments, we then apply the master equation to describe the dynamics in both a two-level and a three-level approximation of the atom. In the two-level case, we also discuss how to measure photon antibunching in the reflected field and how it is affected by finite temperature and finite detection bandwidth.Comment: 18 pages, 7 figure

    Quasiperiodic localized oscillating solutions in the discrete nonlinear Schr\"odinger equation with alternating on-site potential

    Full text link
    We present what we believe to be the first known example of an exact quasiperiodic localized stable solution with spatially symmetric large-amplitude oscillations in a non-integrable Hamiltonian lattice model. The model is a one-dimensional discrete nonlinear Schr\"odinger equation with alternating on-site energies, modelling e.g. an array of optical waveguides with alternating widths. The solution bifurcates from a stationary discrete gap soliton, and in a regime of large oscillations its intensity oscillates periodically between having one peak at the central site, and two symmetric peaks at the neighboring sites with a dip in the middle. Such solutions, termed 'pulsons', are found to exist in continuous families ranging arbitrarily close both to the anticontinuous and continuous limits. Furthermore, it is shown that they may be linearly stable also in a regime of large oscillations.Comment: 4 pages, 4 figures, to be published in Phys. Rev. E. Revised version: change of title, added Figs. 1(b),(c), 4 new references + minor clarification

    Topical analgesia for acute otitis media

    Get PDF
    BACKGROUND: Acute otitis media (AOM) is a spontaneously remitting disease of which pain is the most distressing symptom. Antibiotics are now known to have less benefit than previously assumed. Topical pain relief may be a satisfactory intervention for AOM sufferers and encourage clinicians to prescribe fewer antibiotics. OBJECTIVES: To assess the effectiveness of topical analgesia for AOM in adults and children. SEARCH METHODS: For this second update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), Ovid MEDLINE (2008 to February Week 1 2011), Ovid MEDLINE (In‐Process & Other Non‐Indexed Citations 10 February 2011), Ovid EMBASE (2008 to 2011 Week 05), EBSCO CINAHL (2008 to 4 February 2011) and Ovid AMED (2008 to April 2011). SELECTION CRITERIA: Double‐blind randomised controlled trials (RCTs) or quasi‐RCTs comparing an otic preparation with an analgesic effect (excluding antibiotics) versus placebo or an otic preparation with an analgesic effect (excluding antibiotics) versus any other otic preparation with an analgesic effect, in adults or children presenting at primary care settings with AOM without perforation. DATA COLLECTION AND ANALYSIS: Three review authors independently screened studies, assessed trial quality and extracted data. Attempts to obtain additional information from the trial authors of the included trials were unsuccessful. MAIN RESULTS: Five trials including 391 children aged three to 18 years met our criteria. Two studies (117 children) compared anaesthetic ear drops versus placebo immediately at diagnosis. All children received some form of oral pain relief. In all five studies it was clear that ear pain diminishes rapidly for most sufferers. Nevertheless there was a statistically significant difference in the proportion of children achieving a 50% reduction in pain in favour of anaesthetic drops 10 minutes after instillation (risk ratio (RR) 2.13, 95% confidence interval (CI) 1.19 to 3.80) and 30 minutes after instillation (RR 1.43, 95% CI 1.12 to 1.81) on the day AOM was diagnosed but not at 20 minutes (RR 1.24, 95% CI 0.88 to 1.74). Three trials (274 children) compared anaesthetic ear drops with naturopathic herbal ear drops. Naturopathic drops were favoured 15 and 30 minutes after instillation, one to three days after diagnosis, but the differences were not statistically significant. Only one trial looked at adverse reactions and found none. Overall the findings of this review are based on trial evidence that is at low or unclear risk of bias. AUTHORS' CONCLUSIONS: Evidence from five RCTs, only two of which addressed the most relevant question of primary effectiveness, provides limited evidence that ear drops are effective 30 minutes after administration in older children with AOM. Uncertainty exists as to the magnitude of this effect and more high‐quality studies are needed

    Edge scaling limits for a family of non-Hermitian random matrix ensembles

    Full text link
    A family of random matrix ensembles interpolating between the GUE and the Ginibre ensemble of n×nn\times n matrices with iid centered complex Gaussian entries is considered. The asymptotic spectral distribution in these models is uniform in an ellipse in the complex plane, which collapses to an interval of the real line as the degree of non-Hermiticity diminishes. Scaling limit theorems are proven for the eigenvalue point process at the rightmost edge of the spectrum, and it is shown that a non-trivial transition occurs between Poisson and Airy point process statistics when the ratio of the axes of the supporting ellipse is of order n−1/3n^{-1/3}. In this regime, the family of limiting probability distributions of the maximum of the real parts of the eigenvalues interpolates between the Gumbel and Tracy-Widom distributions.Comment: 44 page

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    Full text link
    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an opto-mechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure

    Optimal Topological Test for Degeneracies of Real Hamiltonians

    Full text link
    We consider adiabatic transport of eigenstates of real Hamiltonians around loops in parameter space. It is demonstrated that loops that map to nontrivial loops in the space of eigenbases must encircle degeneracies. Examples from Jahn-Teller theory are presented to illustrate the test. We show furthermore that the proposed test is optimal.Comment: Minor corrections, accepted in Phys. Rev. Let
    • 

    corecore