8,707 research outputs found

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph

    Ray optics in flux avalanche propagation in superconducting films

    Get PDF
    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adapted physical picture.Comment: 4 pages, 4 figure

    Stock mechanics: predicting recession in S&P500, DJIA, and NASDAQ

    Full text link
    An original method, assuming potential and kinetic energy for prices and conservation of their sum is developed for forecasting exchanges. Connections with power law are shown. Semiempirical applications on S&P500, DJIA, and NASDAQ predict a coming recession in them. An emerging market, Istanbul Stock Exchange index ISE-100 is found involving a potential to continue to rise.Comment: 14 pages, 4 figure

    Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disk mid-planes. I. Radially symmetric simulations

    Full text link
    We perform numerical simulations of the Kelvin-Helmholtz instability in the mid-plane of a protoplanetary disk. A two-dimensional corotating slice in the azimuthal--vertical plane of the disk is considered where we include the Coriolis force and the radial advection of the Keplerian rotation flow. Dust grains, treated as individual particles, move under the influence of friction with the gas, while the gas is treated as a compressible fluid. The friction force from the dust grains on the gas leads to a vertical shear in the gas rotation velocity. As the particles settle around the mid-plane due to gravity, the shear increases, and eventually the flow becomes unstable to the Kelvin-Helmholtz instability. The Kelvin-Helmholtz turbulence saturates when the vertical settling of the dust is balanced by the turbulent diffusion away from the mid-plane. The azimuthally averaged state of the self-sustained Kelvin-Helmholtz turbulence is found to have a constant Richardson number in the region around the mid-plane where the dust-to-gas ratio is significant. Nevertheless the dust density has a strong non-axisymmetric component. We identify a powerful clumping mechanism, caused by the dependence of the rotation velocity of the dust grains on the dust-to-gas ratio, as the source of the non-axisymmetry. Our simulations confirm recent findings that the critical Richardson number for Kelvin-Helmholtz instability is around unity or larger, rather than the classical value of 1/4Comment: Accepted for publication in ApJ. Some minor changes due to referee report, most notably that the clumping mechanism has been identified as the streaming instability of Youdin & Goodman (2005). Movies of the simulations are still available at http://www.mpia.de/homes/johansen/research_en.ph

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Addressing \mu-b_\mu and proton lifetime problems and active neutrino masses in a U(1)^\prime-extended supergravity model

    Full text link
    We present a locally supersymmetric extension of the minimal supersymmetric Standard Model (MSSM) based on the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)′SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)^\prime where, except for the supersymmetry breaking scale which is fixed to be ∼1011\sim 10^{11} GeV, we require that all non-Standard-Model parameters allowed by the {\it local} spacetime and gauge symmetries assume their natural values. The U(1)′U(1)^\prime symmetry, which is spontaneously broken at the intermediate scale, serves to ({\it i}) explain the weak scale magnitudes of μ\mu and bμb_\mu terms, ({\it ii}) ensure that dimension-3 and dimension-4 baryon-number-violating superpotential operators are forbidden, solving the proton-lifetime problem, ({\it iii}) predict {\it bilinear lepton number violation} in the superpotential at just the right level to accommodate the observed mass and mixing pattern of active neutrinos (leading to a novel connection between the SUSY breaking scale and neutrino masses), while corresponding trilinear operators are strongly supppressed. The phenomenology is like that of the MSSM with bilinear R-parity violation, were the would-be lightest supersymmetric particle decays leptonically with a lifetime of ∼10−12−10−8\sim 10^{-12}-10^{-8} s. Theoretical consistency of our model requires the existence of multi-TeV, stable, colour-triplet, weak-isosinglet scalars or fermions, with either conventional or exotic electric charge which should be readily detectable if they are within the kinematic reach of a hadron collider. Null results of searches for heavy exotic isotopes implies that the re-heating temperature of our Universe must have been below their mass scale which, in turn, suggests that sphalerons play a key role for baryogensis. Finally, the dark matter cannot be the weakly interacting neutralino.Comment: 33 pages, 2 figures, Discussion on proton decay and radiative neutrino masses augmented, and references adde

    Dendritic flux patterns in MgB2 films

    Full text link
    Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.Comment: Accepted to Supercond. Sci. Techno

    Construction and validation of a low cost paediatric pelvis phantom

    Get PDF
    PURPOSE: Imaging phantoms can be cost prohibitive, therefore a need exists to produce low cost alternatives which are fit for purpose. This paper describes the development and validation of a low cost paediatric pelvis phantom based on the anatomy of a 5-year-old child. METHODS: Tissue equivalent materials representing paediatric bone (Plaster of Paris; PoP) and soft tissue (Poly methyl methacrylate; PMMA) were used. PMMA was machined to match the bony anatomy identified from a CT scan of a 5-year-old child and cavities were created for infusing the PoP. Phantom validation comprised physical and visual measures. Physical included CT density comparison between a CT scan of a 5-year old child and the phantom and Signal to Noise Ratio (SNR) comparative analysis of anteroposterior phantom X-ray images against a commercial anthropomorphic phantom. Visual analysis using a psychometric image quality scale (face validity). RESULTS: CT density, the percentage difference between cortical bone, soft tissue and their equivalent tissue substitutes were -4.7 to -4.1% and -23.4%, respectively. For SNR, (mAs response) there was a strong positive correlation between the two phantoms (r>0.95 for all kVps). For kVp response, there was a strong positive correlation between 1 and 8 mAs (r=0.85), this then decreased as mAs increased (r=-0.21 at 20 mAs). Psychometric scale results produced a Cronbach’s Alpha of almost 0.8. CONCLUSIONS: Physical and visual measures suggest our low-cost phantom has suitable anatomical characteristics for X-ray imaging. Our phantom could have utility in dose and image quality optimisation studies. Keywords: Pelvis phantom, low-cost, dose optimisation, validation, development
    • …
    corecore