16 research outputs found

    Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan

    Get PDF
    Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system. Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen. Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly. Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-γ). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-γ

    VLPs and particle strategies for cancer vaccines

    Get PDF
    n/

    Enhanced immunogenicity of microencapsulated tetanus toxoid with stabilizing agents

    No full text
    PURPOSE: Antigenic proteins encapsulated in biodegradable polyester microspheres (MS) can slowly denature or aggregate, which results in decreased antigenicity. In this study, we have evaluated the ability of co-encapsulated additives to protect against the loss of tetanus toxoid (TT) antigenicity. METHODS: Antibody responses were analyzed after immunization of mice with TT microencapsulated in the presence of additives (TT-MS-additive). RESULTS: Immunization with TT-MS-additives gave rise to higher responses than those obtained in the absence of additive. BSA, trehalose. Gamma-hydroxypropylcyclodextrin and calcium salts preserved the immunogenicity of the incorporated antigen with the highest efficacy. Sustained responses were obtained with mixtures of fast and slowly releasing TT-MS containing BSA plus trehalose or calcium salts. CONCLUSIONS: The selected additives may stabilize the antigen in MS during storage and rehydration in body fluids. Regulated antigen release from MS-based vaccines permits a reduction of the antigen dose and optimization of single-dose vaccine formulations

    Nickel sensitisation in mice: a critical appraisal

    Full text link
    BACKGROUND: The market release of new domestic and industrial chemical and metal products requires certain safety certification, including testing for skin sensitisation. Although various official guidelines have described how such testing is to be done, the validity of the available test models are in part dubious, for which reason regulatory agencies and research aim to further improve and generalise the models for testing of skin sensitisation. OBJECTIVE: We applied a recently published murine model of nickel allergy as to test its applicability in a regulatory setting and to study and better understand the events leading to type-IV hypersensitivity. Nickel was chosen as model hapten since it induces allergic contact dermatitis with high incidence in the general population. METHOD: Typically, C57BL/6 mice were sensitised and challenged by intradermal applications of nickel, and cutaneous inflammation was analysed by the mouse ear-swelling test, by histology, and by lymphocyte reactivity in vitro. RESULT: Surprisingly, the study suggested that the skin reactions observed were results of irritant reactions rather than of adaptive immune responses. Non-sensitised mice responded with cutaneous inflammation and in vitro lymphocyte reactivity which were comparable with nickel-sensitised mice. Furthermore, histological examinations as well as experiments in T-cell deficient mice demonstrated that lymphocytes were not involved and that nickel caused an irritant contact dermatitis rather a true allergic type-IV contact dermatitis. CONCLUSION: The authors question the validity of the described murine model of nickel allergy

    Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives

    No full text
    PURPOSE: Tetanus toxoid (Ttxd) encapsulated in polyester microspheres (MS) for single injection immunization have so far given pulsatile in vitro release and strong immune response in animals, but no boosting effect. This has been ascribed to insufficient toxoid stability within the MS exposed to in vivo conditions over a prolonged time period. This study examined the effect of co-encapsulated putative stabilizing additives. METHODS: Two different Ttxd were encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA 50:50) and poly(D,L-lactic acid) (PLA) MS by spray-drying. The influence of co-encapsulated additives on toxoid stability, loading in and release from the MS, was studied by fluorimetry and ELISA. RESULTS: Co-encapsulated albumin, trehalose and gamma-hydroxypropyl cyclodextrin all improved the toxoid encapsulation efficiency in PLGA 50:50 MS. Albumin increased the encapsulation efficiency of antigenic Ttxd by one to two orders of magnitude. Further, with albumin or a mixture of albumin and trehalose ELISA responsive Ttxd was released over 1-2 months following a pulsatile pattern. CONCLUSIONS: Optimized Ttxd containing MS may be valuable for a single-dose vaccine delivery system

    Clemastine causes immune suppression through inhibition of extracellular signal-regulated kinase-dependent proinflammatory cytokines

    Full text link
    BACKGROUND: Antihistamines are considered safe and used worldwide against allergy, pruritus, nausea, and cough and as sleeping aids. Nonetheless, a growing number of reports suggest that antihistamines also have immunoregulatory functions. OBJECTIVE: We examined the extent and by what potential mechanisms histamine-1-receptor (H1R) antagonists exert immune suppressive effects. METHODS: Immune suppression by antihistamines and immunosuppressants was tested in mice infected with Listeria monocytogenes. Potential modes of action were studied in vitro by using murine and human cells. We also tested whether injection of clemastine in healthy volunteers affected the activation of peripheral macrophages and monocytes. Finally, therapeutic application of clemastine-mediated immune suppression was tested in a murine model of sepsis. RESULTS: Clemastine and desloratadine strongly reduced innate responses to Listeria monocytogenes in mice as did dexamethasone. The immune suppression was MyD88 independent and characterized by inhibition of the mitogen-activated protein kinase-extracellular signal-regulated kinase signaling pathway, leading to overall impaired innate immunity with reduced TNF-α and IL-6 production. Surprisingly, the observed effects were H1R independent as demonstrated in H1R-deficient mice. Moreover, in a double-blind placebo-controlled clinical trial, 1 intravenous administration of clemastine reduced the TNF-α secretion potential of peripheral blood macrophages and monocytes. This inhibition could be exploited to treat sepsis in mice. CONCLUSIONS: The safety profile of antihistamines may need to be revisited. However, antihistamine-mediated immune suppression may also be exploited and find applications in the treatment of inflammatory diseases. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved

    Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues

    No full text
    The goal of this study was to investigate the entrapment of 3 different model proteins (tetanus toxoid, lysozyme, and insulin) into poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) nanoparticles and to address process-related stability issues. For that purpose, a modified nanoprecipitation method as well as 2 emulsion-based encapsulation techniques (ie, a solid-in oil-in water (s/o/w) and a double emulsion (w1/o/w2) method) were used. The main modification of nanoprecipitation involved the use of a wide range of miscible organic solvents such as dimethylsulfoxide and ethanol instead of the common acetone and water. The results obtained showed that tetanus toxoid and lysozyme were efficiently incorporated by the double emulsion procedure when ethyl acetate was used as solvent (>80% entrapment efficiency), whereas it was necessary to use methylene chloride to achieve high insulin entrapment efficiencies. The use of the s/o/w method or the formation of a more hydrophobic protein-surfactant ion pair did not improve protein loading. The nanoprecipitation method led to a homogenous population of small nanoparticles (with size ranging from ≈130 to 560 nm) and in some cases also improved experimental drug loadings, especially for lysozyme (entrapment efficiency >90%). With respect to drug content determination, a simple and quick matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method provided results very close to those obtained by reverse phase-high-performance liquid chromatography. With respect to protein stability, the duration and intensity of sonication were not a concern for tetanus toxoid, which retained more than 95% of its antigenicity after treatment for 1 minute. Only a high methylene chloride:water ratio was shown to slightly decrease toxoid antigenicity. Finally, no more than 3.3% of A21 desamido insulin and only traces of covalent insulin dimer were detected in nanoparticles. In conclusion, both the double emulsion and nanoprecipitation methods allowed efficient protein encapsulation. MALDI-TOF MS allowed accurate drug content determination. The manufacturing processes evaluated did not damage the primary structure of insulin

    Multifunctional dendritic cell-targeting polymeric microparticles

    No full text
    corecore