9,069 research outputs found

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than ≈10%\approx 10\%, and that only ≈10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of ≈1×1019\approx 1\times 10^{19} and ≈5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption

    Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles

    Full text link
    We document and analyze the empirical facts concerning one of the clearest evidence of speculation in financial trading as observed in the postage collection stamp market. We unravel some of the mechanisms of speculative behavior which emphasize the role of fancy and collective behavior. In our conclusion, we propose a classification of speculative markets based on two parameters, namely the amplitude of the price peak and a second parameter that measures its ``sharpness''. This study is offered to anchor modeling efforts to realistic market constraints and observations.Comment: 9 pages, 5 figures and 2 tables, in press in Int. J. Mod. Phys.

    Stock mechanics: predicting recession in S&P500, DJIA, and NASDAQ

    Full text link
    An original method, assuming potential and kinetic energy for prices and conservation of their sum is developed for forecasting exchanges. Connections with power law are shown. Semiempirical applications on S&P500, DJIA, and NASDAQ predict a coming recession in them. An emerging market, Istanbul Stock Exchange index ISE-100 is found involving a potential to continue to rise.Comment: 14 pages, 4 figure

    Products of Random Matrices

    Get PDF
    We derive analytic expressions for infinite products of random 2x2 matrices. The determinant of the target matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have importance as an uncommitted prior in statistical image analysis.Comment: 9 pages, 1 figur

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Rapid planetesimal formation in turbulent circumstellar discs

    Full text link
    The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.Comment: To appear in Nature (30 August 2007 issue). 18 pages (in referee mode), 3 figures. Supplementary Information can be found at 0708.389

    Holomorphic Currents and Duality in N=1 Supersymmetric Theories

    Full text link
    Twisted supersymmetric theories on a product of two Riemann surfaces possess non-local holomorphic currents in a BRST cohomology. The holomorphic currents act as vector fields on the chiral ring. The OPE's of these currents are invariant under the renormalization group flow up to BRST-exact terms. In the context of electric-magnetic duality, the algebra generated by the holomorphic currents in the electric theory is isomorphic to the one on the magnetic side. For the currents corresponding to global symmetries this isomorphism follows from 't Hooft anomaly matching conditions. The isomorphism between OPE's of the currents corresponding to non-linear transformations of fields of matter imposes non-trivial conditions on the duality map of chiral ring. We consider in detail the SU(Nc)SU(N_c) SQCD with matter in fundamental and adjoint representations, and find agreement with the duality map proposed by Kutasov, Schwimmer and Seiberg.Comment: 19 pages, JHEP3 LaTex, typos correcte

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Construction and validation of a low cost paediatric pelvis phantom

    Get PDF
    PURPOSE: Imaging phantoms can be cost prohibitive, therefore a need exists to produce low cost alternatives which are fit for purpose. This paper describes the development and validation of a low cost paediatric pelvis phantom based on the anatomy of a 5-year-old child. METHODS: Tissue equivalent materials representing paediatric bone (Plaster of Paris; PoP) and soft tissue (Poly methyl methacrylate; PMMA) were used. PMMA was machined to match the bony anatomy identified from a CT scan of a 5-year-old child and cavities were created for infusing the PoP. Phantom validation comprised physical and visual measures. Physical included CT density comparison between a CT scan of a 5-year old child and the phantom and Signal to Noise Ratio (SNR) comparative analysis of anteroposterior phantom X-ray images against a commercial anthropomorphic phantom. Visual analysis using a psychometric image quality scale (face validity). RESULTS: CT density, the percentage difference between cortical bone, soft tissue and their equivalent tissue substitutes were -4.7 to -4.1% and -23.4%, respectively. For SNR, (mAs response) there was a strong positive correlation between the two phantoms (r>0.95 for all kVps). For kVp response, there was a strong positive correlation between 1 and 8 mAs (r=0.85), this then decreased as mAs increased (r=-0.21 at 20 mAs). Psychometric scale results produced a Cronbach’s Alpha of almost 0.8. CONCLUSIONS: Physical and visual measures suggest our low-cost phantom has suitable anatomical characteristics for X-ray imaging. Our phantom could have utility in dose and image quality optimisation studies. Keywords: Pelvis phantom, low-cost, dose optimisation, validation, development
    • 

    corecore