2,350 research outputs found

    Multichannel Kondo Effect in an Interacting Electron System: Exact Results for the Low-Temperature Thermodynamics

    Full text link
    We study the low-temperature thermodynamics of a spin-S magnetic impurity coupled to m degenerate bands of interacting electrons in one dimension. By exploiting boundary conformal field theory techniques, we derive exact results for the possible impurity thermal and magnetic response. The leading behavior of the impurity magnetic susceptibility is shown to be insensitive to the electron-electron interaction. In contrast, there are two types of scaling behavior of the impurity specific heat consistent with the symmetries of the problem: Either it remains the same as for the ordinary multichannel Kondo problem for noninteracting electrons, or it acquires a new leading term governed by an interaction-dependent critical exponent. We conjecture that the latter behavior is indeed realized when the impurity is exactly screened (m=2S).Comment: 8 pages, RevTeX; to appear in Phys. Rev.

    Addendum to ``Multichannel Kondo screening in a one-dimensional correlated electron system''

    Full text link
    This is an addendum to our previous work cond-mat/9705048 (published in Europhysics Letters 41, 213 (1998)), clarifying the construction of the two-particle scattering matrices used for studying the magnetic impurity behavior in a multichannel correlated host.Comment: Addendum to cond-mat/9705048 (Europhys. Lett. 41, 213 (1998)

    Extra Shared Entanglement Reduces Memory Demand in Quantum Convolutional Coding

    Get PDF
    We show how extra entanglement shared between sender and receiver reduces the memory requirements for a general entanglement-assisted quantum convolutional code. We construct quantum convolutional codes with good error-correcting properties by exploiting the error-correcting properties of an arbitrary basic set of Pauli generators. The main benefit of this particular construction is that there is no need to increase the frame size of the code when extra shared entanglement is available. Then there is no need to increase the memory requirements or circuit complexity of the code because the frame size of the code is directly related to these two code properties. Another benefit, similar to results of previous work in entanglement-assisted convolutional coding, is that we can import an arbitrary classical quaternary code for use as an entanglement-assisted quantum convolutional code. The rate and error-correcting properties of the imported classical code translate to the quantum code. We provide an example that illustrates how to import a classical quaternary code for use as an entanglement-assisted quantum convolutional code. We finally show how to "piggyback" classical information to make use of the extra shared entanglement in the code.Comment: 7 pages, 1 figure, accepted for publication in Physical Review

    Standard gamble, time trade-off and rating scale: Experimental results on the ranking properties of QALYs

    Get PDF
    This paper compares the relative performance of quality adjusted life years (QALYs) based on quality weights elicited by rating scale (RS), time trade-off (TTO) and standard gamble (SG). The standard against which relative performance is assessed is individual preference elicited by direct ranking. The correlation between predicted and direct ranking is significantly higher for TTO-QALYs than for RS-QALYs and SG-QALYs. This holds both based on mean Spearman rank correlation coefficients calculated per individual and based on two social choice rules: the method of majority voting and the Borda rule. Undiscounted TTO-QALYs are more consistent with direct ranking than discounted TTO-QALY

    The effect of multiple paternity on genetic diversity during and after colonisation

    Get PDF
    In metapopulations, genetic variation of local populations is influenced by the genetic content of the founders, and of migrants following establishment. We analyse the effect of multiple paternity on genetic diversity using a model in which the highly promiscuous marine snail Littorina saxatilis expands from a mainland to colonise initially empty islands of an archipelago. Migrant females carry a large number of eggs fertilised by 1 - 10 mates. We quantify the genetic diversity of the population in terms of its heterozygosity: initially during the transient colonisation process, and at long times when the population has reached an equilibrium state with migration. During colonisation, multiple paternity increases the heterozygosity by 10 - 300 % in comparison with the case of single paternity. The equilibrium state, by contrast, is less strongly affected: multiple paternity gives rise to 10 - 50 % higher heterozygosity compared with single paternity. Further we find that far from the mainland, new mutations spreading from the mainland cause bursts of high genetic diversity separated by long periods of low diversity. This effect is boosted by multiple paternity. We conclude that multiple paternity facilitates colonisation and maintenance of small populations, whether or not this is the main cause for the evolution of extreme promiscuity in Littorina saxatilis.Comment: 7 pages, 5 figures, electronic supplementary materia

    Persistent currents through a quantum impurity: Protection through integrability

    Full text link
    We consider an integrable model of a one-dimensional mesoscopic ring with the conduction electrons coupled by a spin exchange to a magnetic impurity. A symmetry analysis based on a Bethe Ansatz solution of the model reveals that the current is insensitive to the presence of the impurity. We argue that this is true for any integrable impurity-electron interaction, independent of choice of physical parameters or couplings. We propose a simple physical picture of how the persistent current gets protected by integrability.Comment: 5 pages, minor update

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Cancer risk among patients with cystic fibrosis and their first-degree relatives

    No full text
    Patients with cystic fibrosis (CF) are at increased risk of some cancers. Little is known about the cancer risks among carriers heterozygous for the CF mutation and it is hypothesized this may be associated with reduced cancer risk. Using Swedish general population-based registers, we identified 884 patients with CF from 1968 to 2003 and 3,033 of their first-degree relatives The subjects were followed from birth of index persons or 1958, whichever came later, until death, emigration or 2003, whichever came first. Cancer risks were compared with the general Swedish population using standardized incidence ratios (SIR) with 95% confidence intervals (CI). Patients, followed for an average of 21 years, were at a higher overall risk of cancer. Some 26 cancer diagnoses, after excluding multiple diagnoses of nonmelanoma skin cancer in one man, produced an overall SIR of 3.2 (95%CI 2.1-4.6).We found statistically significantly increased risks for kidney, thyroid, endocrine, lymphoma and nonmelanoma skin cancer. There was no modification of cancer risk among parents and siblings, with an average of 21 years of follow-up. This study did not identify a heterozygote advantage for CF gene mutations in relation to cancer risk. © 2009 UICC

    Entanglement Scaling in the One-Dimensional Hubbard Model at Criticality

    Full text link
    We derive exact expressions for the local entanglement entropy E in the ground state of the one-dimensional Hubbard model at a quantum phase transition driven by a change in magnetic field h or chemical potential u. The leading divergences of dE/dh and dE/du are shown to be directly related to those of the zero-temperature spin and charge susceptibilities. Logarithmic corrections to scaling signal a change in the number of local states accessible to the system as it undergoes the transition.Comment: 4+ pages, 2 figures. Fig. 2 and minor typos correcte
    corecore