5 research outputs found

    Hydrodeoxygenation of Phenol to Benzene and Cyclohexane on Rh(111) and Rh(211) Surfaces: Insights from Density Functional Theory

    Get PDF
    Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. We show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions, and that this relationship is the same for Rh(111) and Rh(211)

    High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    No full text
    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)­PbX<sub>3</sub> (MA = CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>, X = Br<sup>–</sup> or I<sup>–</sup>) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)­PbI<sub>3</sub> obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)­Pb­(Br<sub><i>x</i></sub>I<sub>1–<i>x</i></sub>)<sub>3</sub> (0.2 < <i>x</i> < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors

    Factors Affecting the Electron Conductivity in Single Crystal Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> and Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>

    No full text
    One of the serious challenges in all solid-state Li ion batteries is neutral Li intrusion into the solid-state electrolyte that can ultimately cause catastrophic failure. One possibility for this is due to n-type electron conductivity that induces the reaction Li+ + e– → Li0 at sites where the potential is less than the Li+/Li potential. This paper reports hybrid density functional theory calculations of the electronic conductivity in two prototype single crystalline solid-state electrolytes, cubic Li7La3Zr2O12 (c-LLZO) and Li7P3S11 (LPS). The formation energies of important point defects that can affect electron conductivity are determined, and we find that the mechanism of n-type electron conductivity for both solid-state electrolytes is via “small” electron polaron hopping, where the quotes signify that substantial Li ion rearrangement is associated with the polaron formation and its migration. In both electrolytes, the formation energies for the small polarons at the Fermi energy are too high to generate measurable electron conductivity at room temperature. For c-LLZO, the concentration of electron polarons necessary to ensure charge neutrality from positively charged oxygen vacancies formed in synthesis can be significantly higher. Hence, the electron conductivity could be significant when measured with ion-blocking metal electrodes, and we discuss how the synthesis conditions could affect this magnitude. However, in the solid-state battery, these polarons are replaced by negatively charged Li vacancies so that the electron conductivity should remain minimal. For LPS single crystals, the inherent minimal electron conductivity is independent of synthesis conditions. We also show that the cost of forming Li0 in bulk c-LLZO is enormous due to strain effects so that it could only potentially form at voids, grain boundaries, or around vacancy defects which relax the lattice strain

    Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    Get PDF
    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from CO to be a critical step in C<sub>1</sub> product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. This work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction
    corecore