27 research outputs found

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data

    Get PDF
    OBJECTIVE: To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. DESIGN: Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. DATA SOURCES: Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. RESULTS: Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). CONCLUSIONS: In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42012002780

    Individual patient data meta-analysis for the clinical assessment of coronary computed tomography angiography: protocol of the Collaborative Meta-Analysis of Cardiac CT (CoMe-CCT)

    Get PDF
    Background Coronary computed tomography angiography has become the foremost noninvasive imaging modality of the coronary arteries and is used as an alternative to the reference standard, conventional coronary angiography, for direct visualization and detection of coronary artery stenoses in patients with suspected coronary artery disease. Nevertheless, there is considerable debate regarding the optimal target population to maximize clinical performance and patient benefit. The most obvious indication for noninvasive coronary computed tomography angiography in patients with suspected coronary artery disease would be to reliably exclude significant stenosis and, thus, avoid unnecessary invasive conventional coronary angiography. To do this, a test should have, at clinically appropriate pretest likelihoods, minimal false-negative outcomes resulting in a high negative predictive value. However, little is known about the influence of patient characteristics on the clinical predictive values of coronary computed tomography angiography. Previous regular systematic reviews and meta-analyses had to rely on limited summary patient cohort data offered by primary studies. Performing an individual patient data meta-analysis will enable a much more detailed and powerful analysis and thus increase representativeness and generalizability of the results. The individual patient data meta-analysis is registered with the PROSPERO database (CoMe-CCT, CRD42012002780). Methods/Design The analysis will include individual patient data from published and unpublished prospective diagnostic accuracy studies comparing coronary computed tomography angiography with conventional coronary angiography. These studies will be identified performing a systematic search in several electronic databases. Corresponding authors will be contacted and asked to provide obligatory and additional data. Risk factors, previous test results and symptoms of individual patients will be used to estimate the pretest likelihood of coronary artery disease. A bivariate random-effects model will be used to calculate pooled mean negative and positive predictive values as well as sensitivity and specificity. The primary outcome of interest will be positive and negative predictive values of coronary computed tomography angiography for the presence of coronary artery disease as a function of pretest likelihood of coronary artery disease, analyzed by meta-regression. As a secondary endpoint, factors that may influence the diagnostic performance and clinical value of computed tomography, such as heart rate and body mass index of patients, number of detector rows, and administration of beta blockade and nitroglycerin, will be investigated by integrating them as further covariates into the bivariate random-effects model. Discussion This collaborative individual patient data meta-analysis should provide answers to the pivotal question of which patients benefit most from noninvasive coronary computed tomography angiography and thus help to adequately select the right patients for this test

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780
    corecore