26 research outputs found

    Untersuchungen zur Induktion von nicht-apoptotischem, reguliertem Zelltod als mögliche Strategie in der Krebstherapie

    Get PDF
    Experimentelle Arbeit mit in vitro Versuchen zur Induktion von nicht-apoptotischem reguliertem Zelltod. Der nicht apoptotische regulierte Zelltod soll in seinen Abläufen besser verstanden werden und dessen Induktion optimiert werden um diesen für die Krebstherapie nutzbar zu machen. Ein Schwerpunkt lag dabei auf der Untersuchung von TRAIL-vermittelter Nekroptose. Die Untersuchungen erfolgten an Zellkulturen von humanen Pankreas und Colonkarzinomen. Methodisch wurden für die Zelltod-Analyse vornehmlich Die Durchflusszytometrie mit PI-Färbung verwendet

    Health care-associated rotavirus illness in pediatric inpatients in Germany, Austria, and Switzerland

    Get PDF
    A longitudinal study of health care-associated transmission of rotaviruses (RVs) in pediatric inpatients 0-48 months old in Austria, Germany, and Switzerland showed that almost one third of all cases occurred in patients 2 months old or younger. The effectiveness of vaccination against RV from 2 months of age onward remains to be evaluated

    Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    No full text
    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application

    Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells.

    Get PDF
    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H(+)-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches
    corecore