33 research outputs found

    Contribution of calcium-conducting channels to the transport of zinc ions.

    Get PDF
    International audienceZinc (Zn) is a vital nutrient participating in a myriad of biological processes. The mechanisms controlling its transport through the plasma membrane are far from being completely understood. Two families of eukaryotic zinc transporters are known to date: the Zip (SLC39) and ZnT (SLC30) proteins. In addition, some types of plasmalemmal calcium (Ca)-conducting channels are implied in the cellular uptake of zinc. These ion channels are currently described as systems dedicated to the transport of Ca (and, to some extent, sodium (Na) ions). However, a growing body of evidence supports the view that some of them can also function as pathways for Zn transport. For instance, voltage-gated Ca channels and some types of glutamate-gated receptors have long been known to allow the entry of Zn. More recently, members of the TRP superfamily, another type of Ca-conducting channels, have been shown to permit the uptake of Zn into eukaryotic cells. The aim of this review article is to present the current knowledge supporting the notion that Ca-conducting channels take part in the plasmalemmal transport of Zn

    Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo

    Get PDF
    Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique to measure the cytosolic Ca2+ concentration under conditions as natural as possible. The calcium indicator dyes Oregon Green 1, 2, or 5N (Molecular Probes, Inc., Eugene, OR) were iontophoretically injected via an intracellular electrode into a photoreceptor cell in the intact eye; the same electrode was also used to measure the membrane potential. The blue-induced green fluorescence of these dyes could be monitored by making use of the optics of the facet lens and the rhabdomere waveguide. The use of the different Ca2+-sensitive dyes that possess different affinities for Ca2+ allowed the quantitative determination of the cytosolic Ca2+ concentration in the steady state. Determining the cytosolic Ca2+ concentration as a function of the adapting light intensity shows that the Ca2+ concentration is regulated in a graded fashion over the whole dynamic range where a photoreceptor cell can respond to light. When a photoreceptor is adapted to bright light, the cytosolic Ca2+ concentration reaches stable values higher than 10 mu M. The data are consistent with the hypothesis that the logarithm of the increase in cytosolic Ca2+ concentration is linear with the logarithm of the light intensity. From the estimated values of the cytosolic Ca2+ concentration, we conclude that the Ca2+-buffering capacity is limited. The percentage of the Ca2+ influx that is buffered gradually decreases with increasing Ca2+ concentrations; at cytosolic Ca2+ concentration levels above 10 mu M, buffering becomes minimal

    TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat

    Get PDF
    SummaryTransient receptor potential melastatin-3 (TRPM3) is a broadly expressed Ca2+-permeable nonselective cation channel. Previous work has demonstrated robust activation of TRPM3 by the neuroactive steroid pregnenolone sulfate (PS), but its in vivo gating mechanisms and functions remained poorly understood. Here, we provide evidence that TRPM3 functions as a chemo- and thermosensor in the somatosensory system. TRPM3 is molecularly and functionally expressed in a large subset of small-diameter sensory neurons from dorsal root and trigeminal ganglia, and mediates the aversive and nocifensive behavioral responses to PS. Moreover, we demonstrate that TRPM3 is steeply activated by heating and underlies heat sensitivity in a subset of sensory neurons. TRPM3-deficient mice exhibited clear deficits in their avoidance responses to noxious heat and in the development of inflammatory heat hyperalgesia. These experiments reveal an unanticipated role for TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat

    A succinate/SUCNR1-brush cell defense program in the tracheal epithelium

    Get PDF
    Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl− secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite

    Permeation, regulation and control of expression of TRP channels by trace metal ions

    Get PDF
    corecore