8 research outputs found

    Study of 3D-growth conditions for selective area MOVPE of high aspect ratio GaN fins with non-polar vertical sidewalls

    Get PDF
    GaN fins are 3D architectures elongated in one direction parallel to the substrate surface. They have the geometry of walls with a large height to width ratio as well as small footprints. When appropriate symmetry directions of the GaN buffer are used, the sidewalls are formed by non-polar {11-20} planes, making the fins particularly suitable for many device applications like LEDs, FETs, lasers, sensors or waveguides. The influence of growth parameters like temperature, pressure, V/III ratio and total precursor flow on the fin structures is analyzed. Based on these results, a 2-temperature-step-growth was developed, leading to fins with smooth side and top facets, fast vertical growth rates and good homogeneity along their length as well as over different mask patterns. For the core-shell growth of fin LED heterostructures, the 2-temperature-step-growth shows much smoother sidewalls and less crystal defects in the InGaN QW and p-GaN shell compared to structures with cores grown in just one step. Electroluminescence spectra of the 2-temperature-step-grown fin LED are demonstrated

    Characterization of Glucocorticoid Binding Capacity in Human Mononuclear Lymphocytes: Increase by Metyrapone is Prevented by Dexamethasone Pretreatment

    Get PDF
    Autoregulation of receptor systems by their own ligands is a well established biological phenomenon. While down-regulation of the glucocorticoid binding capacity by glucocorticoids has been shown in animals and humans, data on up-regulation processes in humans are lacking. To further explore glucocorticoid receptor plasticity in relation to endogenous ligands, glucocorticoid binding parameters were assessed in 15 healthy controls before and after oral administration of 1.5 g metyrapone with and without dexamethasone pretreatment. Administration of metyrapone resulted in blockade of the feedback of the hypothalamic-pituitary-adrenal system as shown by the rise in adrenocorticotropin levels, while pretreatment with 1 mg dexamethasone completely suppressed adrenocorticotropin concentrations. Glucocorticoid binding sites per lymphocyte exhibited an increase of 63% following metyrapone administration, which was prevented by dexamethasone pretreatment. Comparison of morning and afternoon glucocorticoid binding sites per cell in 11 healthy volunteers further revealed a diurnal rhythm of glucocorticoid receptor sites. These data suggest that human lymphocyte glucocorticoid receptors are under autoregulatory control

    The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures

    Full text link
    A core-shell geometry is employed for most next-generation, three-dimensional opto-electric devices based on III–V semiconductors and grown by metal organic vapor phase epitaxy (MOVPE). Controlling the shape of the shell layers is fundamental for device optimization, however no detailed analysis of the influence of growth conditions has been published to date. We study homogeneous arrays of gallium nitride core-shell microrods with height and diameter in the micrometer range and grown in a two-step selective area MOVPE process. Changes in shell shape and homogeneity effected by deliberately altered shell growth conditions were accurately assessed by digital analysis of high-resolution scanning electron microscope images. Most notably, two temperature regimes could be established, which show a significantly different behavior with regard to material distribution. Above 900 °C of wafer carrier temperature, the shell thickness along the growth axis of the rods was very homogeneous, however variations between vicinal rods increase. In contrast, below 830 °C the shell thickness is higher close to the microrod tip than at the base of the rods, while the lateral homogeneity between neighboring microrods is very uniform. This temperature effect could be either amplified or attenuated by changing the remaining growth parameters such as reactor pressure, structure distance, gallium precursor, carrier gas composition and dopant materials. Possible reasons for these findings are discussed with respect to GaN decomposition as well as the surface and gas phase diffusion of growth species, leading to an improved control of the functional layers in next-generation 3D V–III devices

    High Aspect Ratio GaN Fin Microstructures with Nonpolar Sidewalls by Continuous Mode Metalorganic Vapor Phase Epitaxy

    Get PDF
    Three-dimensional GaN micro- and nanorods with high aspect ratio have recently gained substantial interest in LED research, due to their reduced defect density, their non-polar sidewalls and their increased active area. Here, we present an alternative geometry for high aspect ratio 3D nanostructures: vertically standing GaN “walls”, so called GaN fins. With high aspect ratios, these GaN fins exhibit the same interesting characteristics as their rod counterparts mentioned above. Beyond that, due to their geometry, the respective material analysis and device processing can be expected to be less complex. We are able to demonstrate the highly reproducible selective area growth of these fins by continuous mode MOVPE. Fin heights of more than 50 µm (aspect ratios of nearly 14) could be achieved and growth rates are as high as 22.8 µm/h in the beginning of the growth. The sidewalls are smooth non-polar a-planes, suitable for optoelectronic devices due to the missing quantum-confined Stark effect and less edge effects compared to rods. We investigate the influence of pattern orientation and geometry on the fin morphology. Moreover, the influence of silane flow, which is known to enhance the vertical growth rate, and other growth parameters are systematically explored

    3D GaN Fins as a Versatile Platform for a‐Plane‐Based Devices

    Get PDF
    GaN fins on GaN-on-sapphire templates are fabricated by continuous mode selective area metalorganic vapor phase epitaxy. The fins exhibit high aspect ratios and smooth nonpolar a-plane sidewalls with an ultra-low threading dislocation density of a few 105 cm^-2 making them ideally suited for optoelectronic to electronic applications. A detailed analysis of the inner structure of GaN fins is provided by the help of marker layer experiments and correlation of results from fins fabricated under different growth conditions, leading to the development of a growth model to explain the final geometry and optical as well as electrical properties of these high aspect ratio fins. Distinctly different material properties for the central and outer parts of the fins are detected. Whereas the outer sidewalls represent high quality GaN surfaces with very low defect densities, a strong quenching of near band edge emission (NBE) in the central part of the fins is accompanied by heavy compensation of free electrons. A possible explanation is the incorporation of excessive point defects, like intrinsic defects or carbon impurity. The sidewall regions, however, prove to be highly suitable for device applications due to their strong NBE emission, low dislocation density and high free carrier concentration
    corecore