10,025 research outputs found

    Creatine kinase in energy metabolic signaling in muscle

    Get PDF
    There has been much debate on the mechanism of regulation of mitochondrial ATP synthesis to balance ATP consumption during changing cardiac workloads. A key role of creatine kinase (CK) isoenzymes in this regulation of oxidative phosphorylation and in intracellular energy transport had been proposed, but has in the mean time been disputed for many years. It was hypothesized that high-energy phosphoryl groups are obligatorily transferred via CK; this is termed the phosphocreatine shuttle. The other important role ascribed to the CK system is its ability to buffer ADP concentration in cytosol near sites of ATP hydrolysis. 

Almost all of the experiments to determine the role of CK had been done in the steady state, but recently the dynamic response of oxidative phosphorylation to quick changes in
cytosolic ATP hydrolysis has been assessed at various levels of inhibition of CK. Steady state models of CK function in energy transfer existed but were unable to explain the dynamic response with CK inhibited.

The aim of this study was to explain the mode of functioning of the CK system in heart, and in particular the role of different CK isoenzymes in the dynamic response to workload steps. For this purpose we used a mathematical model of cardiac muscle cell energy metabolism containing the kinetics of the key processes of energy production, consumption and transfer pathways. The model underscores that CK plays indeed a dual role in the cardiac cells. The buffering role of CK system is due to the activity of myofibrillar CK (MMCK) while the energy transfer role depends on the activity of mitochondrial CK (MiCK). We propose that this may lead to the differences in regulation mechanisms and energy transfer modes in species with relatively low MiCK activity such as rabbit in comparison with species with high MiCK activity such as rat.

The model needed modification to explain the new type of experimental data on the dynamic response of the mitochondria. We submit that building a Virtual Muscle Cell is not possible without continuous experimental tests to improve the model. In close interaction with experiments we are developing a model for muscle energy metabolism and transport mediated by the creatine kinase isoforms which now already can explain many different types of experiments

    A novel topology of high-speed SRM for high-performance traction applications

    Get PDF
    A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results

    Highly Selective Hydroformylation of the Cinchona Alkaloids

    Get PDF
    The four naturally occurring cinchona alkaloids were subjected to hydroformylation to create an extra functional group that allows immobilization. Cinchonidine, quinine, and quinidine, could be hydroformylated with virtually complete terminal selectivity, using a rhodium/tetraphosphite catalyst. The cinchonidine aldehyde was reduced to the alcohol and subjected to reductive amination with benzylamine.

    A Suzuki Coupling Based Route to 2,2'-Bis(2-indenyl)biphenyl Derivatives

    Get PDF
    Because of the promising performance in olefin polymerization of 2,2'-bis(2-indenyldiyl)biphenyl zirconium dichloride, we developed a new and broadly applicable route to 2,2'-bis(2-indenyl)biphenyl derivatives. Reaction of the known 2,2'-diiodobiphenyl with the new 2-indenyl boronic acid did not result in the desired 2,2'-bis(2-indenyl)biphenyl (10); instead an isomer thereof, (spiro-1,1-(2,2'-biphenyl)-2-(2-indenyl)indane), was obtained. It was found that compound 10 could be made via a palladium-catalyzed reaction of 2,2-biphenyldiboronic acid with 2-bromoindene under standard Suzuki reaction conditions. However, the yield of this reaction was low at low palladium catalyst loadings, due to a competitive hydrolysis reaction of 2,2-biphenyldiboronic acid. HTE techniques were used to find an economically viable protocol. Thus, use of the commercially available 1.0 molar solution of (n-Bu)4NOH in methanol with cosolvent toluene led to precipitation of the pure product in a fast and clean reaction, using only 0.7 mol % (0.35 mol % per C-C) of the expensive palladium catalyst.

    Sistem Informasi Pengelolaan Kegiatan Gereja Berbasis Web Di Gereja Katolik Cinta Damai

    Get PDF
    Penyampaian informasi kegiatan di Gereja Katholik Cinta Damai saat ini masih dilakukan dengan manual. Dimana pengurus gereja dalam hal penyampaian nya masih dilakukan hanya dari atas altar saja. Sehingga akan berdampak pada para jemaat yang kurang mendengar atau pun jemaat yang tidak hadir tidak akan dapat informasi secara penuh dari gereja. Maka dari itu Gereja Katholik Cinta Damai membutuhkan suatu aplikasi sehingga dapat menyampaikan informasi yang lebih efektif dan efisien. Aplikasi ini menggunakan pemograman berbasis website. Dengan bahasa pemograman Hypertext Preprocessor (PHP) yang di dukung dengan Microsoft SQL Server sebagai databasenya. Dengan adanya aplikasi ini agar dapat mempermudah jemaat gereja dalam memperoleh informasi dari Gereja Katholik Cinta Damai
    corecore