84 research outputs found

    The affinely invariant distance correlation

    Full text link
    Sz\'{e}kely, Rizzo and Bakirov (Ann. Statist. 35 (2007) 2769-2794) and Sz\'{e}kely and Rizzo (Ann. Appl. Statist. 3 (2009) 1236-1265), in two seminal papers, introduced the powerful concept of distance correlation as a measure of dependence between sets of random variables. We study in this paper an affinely invariant version of the distance correlation and an empirical version of that distance correlation, and we establish the consistency of the empirical quantity. In the case of subvectors of a multivariate normally distributed random vector, we provide exact expressions for the affinely invariant distance correlation in both finite-dimensional and asymptotic settings, and in the finite-dimensional case we find that the affinely invariant distance correlation is a function of the canonical correlation coefficients. To illustrate our results, we consider time series of wind vectors at the Stateline wind energy center in Oregon and Washington, and we derive the empirical auto and cross distance correlation functions between wind vectors at distinct meteorological stations.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ558 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Muscarinic Modulation of Morphologically Identified Glycinergic Neurons in the Mouse PreBötzinger Complex

    Get PDF
    The cholinergic system plays an essential role in central respiratory control, but the underlying mechanisms remain elusive. We used whole-cell recordings in brainstem slices from juvenile mice expressing enhanced green fluorescent protein (EGFP) under the control of the glycine transporter type 2 (GlyT2) promoter, to examine muscarinic modulation of morphologically identified glycinergic neurons in the preBötzinger complex (preBötC), an area critical for central inspiratory rhythm generation. Biocytin-filled reconstruction of glycinergic neurons revealed that the majority of them had few primary dendrites and had axons arborized within their own dendritic field. Few glycinergic neurons had axon collaterals extended towards the premotor/motor areas or ran towards the contralateral preBötC, and had more primary dendrites and more compact dendritic trees. Spontaneously active glycinergic neurons fired regular spikes, or less frequently in a “burst-like” pattern at physiological potassium concentration. Muscarine suppressed firing in the majority of regular spiking neurons via M2 receptor activation while enhancing the remaining neurons through M1 receptors. Interestingly, rhythmic bursting was augmented by muscarine in a small group of glycinergic neurons. In contrast to its heterogeneous modulation of glycinergic neuronal excitability, muscarine generally depressed inhibitory and excitatory synaptic inputs onto both glycinergic and non-glycinergic preBötC neurons, with a stronger effect on inhibitory input. Notably, presynaptic muscarinic attenuation of excitatory synaptic input was dependent on M1 receptors in glycinergic neurons and on M2 receptors in non-glycinergic neurons. Additional field potential recordings of excitatory synaptic potentials in the M2 receptor knockout mice indicate that glycinergic and non-glycinergic neurons contribute equally to the general suppression by muscarine of excitatory activity in preBötC circuits. In conclusion, our data show that preBötC glycinergic neurons are morphologically heterogeneous, and differ in the properties of synaptic transmission and muscarinic modulation in comparison to non-glycinergic neurons. The dominant and cell-type-specific muscarinic inhibition of synaptic neurotransmission and spiking may contribute to central respiratory disturbances in high cholinergic states

    De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients

    Get PDF
    De novo lipogenesis (DNL)-related monounsaturated fatty acids (MUFAs) in the blood are associated with incident heart failure (HF). This observation's biological plausibility may be due to the potential of these MUFAs to induce proinflammatory pathways, endoplasmic reticulum stress, and insulin resistance, which are pathophysiologically relevant in HF. The associations of circulating MUFAs with cardiometabolic phenotypes in patients with heart failure with a preserved ejection fraction (HFpEF) are unknown. In this secondary analysis of the Aldosterone in Diastolic Heart Failure trial, circulating MUFAs were analysed in 404 patients using the HS-Omega-3-Index®^{®} methodology. Patients were 67 ± 8 years old, 53% female, NYHA II/III (87/13%). The ejection fraction was ≥50%, E/e' 7.1 ± 1.5, and the median NT-proBNP 158 ng/L (IQR 82-298). Associations of MUFAs with metabolic, functional, and echocardiographic patient characteristics at baseline/12 months follow-up (12 mFU) were analysed using Spearman's correlation coefficients and linear regression analyses, using sex/age as covariates. Circulating levels of C16:1n7 and C18:1n9 were positively associated with BMI/truncal adiposity and associated traits (dysglycemia, atherogenic dyslipidemia, and biomarkers suggestive of non-alcoholic-fatty liver disease). They were furthermore inversely associated with functional capacity at baseline/12 mFU. In contrast, higher levels of C20:1n9 and C24:1n9 were associated with lower cardiometabolic risk and higher exercise capacity at baseline/12 mFU. In patients with HFpEF, circulating levels of individual MUFAs were differentially associated with cardiovascular risk factors. Our findings speak against categorizing FA based on physicochemical properties. Circulating MUFAs may warrant further investigation as prognostic markers in HFpEF

    Trans-fatty acid blood levels of industrial but not natural origin are associated with cardiovascular risk factors in patients with HFpEF: a secondary analysis of the Aldo-DHF trial

    Full text link
    BACKGROUND Industrially processed trans-fatty acids (IP-TFA) have been linked to altered lipoprotein metabolism, inflammation and increased NT-proBNP. In patients with heart failure with preserved ejection fraction (HFpEF), associations of TFA blood levels with patient characteristics are unknown. METHODS This is a secondary analysis of the Aldo-DHF-RCT. From 422 patients, individual blood TFA were analyzed at baseline in n = 404 using the HS-Omega-3-Index®^{®} methodology. Patient characteristics were: 67 ± 8 years, 53% female, NYHA II/III (87/13%), ejection fraction ≥ 50%, E/e' 7.1 ± 1.5; NT-proBNP 158 ng/L (IQR 82-298). A principal component analysis was conducted but not used for further analysis as cumulative variance for the first two PCs was low. Spearman's correlation coefficients as well as linear regression analyses, using sex and age as covariates, were used to describe associations of whole blood TFA with metabolic phenotype, functional capacity, echocardiographic markers for LVDF and neurohumoral activation at baseline and after 12 months. RESULTS Blood levels of the naturally occurring TFA C16:1n-7t were inversely associated with dyslipidemia, body mass index/truncal adiposity, surrogate markers for non-alcoholic fatty liver disease and inflammation at baseline/12 months. Conversely, IP-TFA C18:1n9t, C18:2n6tt and C18:2n6tc were positively associated with dyslipidemia and isomer C18:2n6ct with dysglycemia. C18:2n6tt and C18:2n6ct were inversely associated with submaximal aerobic capacity at baseline/12 months. No significant association was found between TFA and cardiac function. CONCLUSIONS In HFpEF patients, higher blood levels of IP-TFA, but not naturally occurring TFA, were associated with dyslipidemia, dysglycemia and lower functional capacity. Blood TFAs, in particular C16:1n-7t, warrant further investigation as prognostic markers in HFpEF. Higher blood levels of industrially processed TFA, but not of the naturally occurring TFA C16:1n-7t, are associated with a higher risk cardiometabolic phenotype and prognostic of lower aerobic capacity in patients with HFpEF

    Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study.

    Get PDF
    BACKGROUND: Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics. METHODS: 10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [εs], peak positive SR [SRs]), LA conduit function (passive strain [εe], peak early negative SR [SRe]) and LA booster pump function (active strain [εa], late peak negative SR [SRa]). RESULTS: In all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (εs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p \u3c 0.01; SRs [s⁻¹]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p \u3c 0.05) and impaired LA conduit function as compared to healthy controls (εe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p \u3c 0.001; SRe [s]⁻¹: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p \u3c 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (εa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p \u3c 0.01; SRa [s⁻¹]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p \u3c 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses. CONCLUSIONS: CMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states

    Phenotyping patients with ischaemic heart disease at risk of developing heart failure: an analysis of the HOMAGE trial

    Get PDF
    Aims: We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and without coronary artery disease (CAD) or prior myocardial infarction (MI). Methods and results: HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over 9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis, patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants, 28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen activator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tumour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months. Conclusions: In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflammatory, immunological, and collagen catabolic processes
    corecore