31 research outputs found

    Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity

    Get PDF
    Background: The actin-interacting protein WD repeat–containing protein 1 (WDR1) promotes cofilin-dependent actin filament turnover. Biallelic WDR1 mutations have been identified recently in an immunodeficiency/autoinflammatory syndrome with aberrant morphology and function of myeloid cells. Objective: Given the pleiotropic expression of WDR1, here we investigated to what extent it might control the lymphoid arm of the immune system in human subjects. Methods: Histologic and detailed immunologic analyses were performed to elucidate the role of WDR1 in the development and function of B and T lymphocytes. Results: Here we identified novel homozygous and compound heterozygous WDR1 missense mutations in 6 patients belonging to 3 kindreds who presented with respiratory tract infections, skin ulceration, and stomatitis. In addition to defective adhesion and motility of neutrophils and monocytes, WDR1 deficiency was associated with aberrant T-cell activation and B-cell development. T lymphocytes appeared to develop normally in the patients, except for the follicular helper T-cell subset. However, peripheral T cells from the patients accumulated atypical actin structures at the immunologic synapse and displayed reduced calcium flux and mildly impaired proliferation on T-cell receptor stimulation. WDR1 deficiency was associated with even more severe abnormalities of the B-cell compartment, including peripheral B-cell lymphopenia, paucity of B-cell progenitors in the bone marrow, lack of switched memory B cells, reduced clonal diversity, abnormal B-cell spreading, and increased apoptosis on B-cell receptor/Toll-like receptor stimulation. Conclusion: Our study identifies a novel role for WDR1 in adaptive immunity, highlighting WDR1 as a central regulator of actin turnover during formation of the B-cell and T-cell immunologic synapses

    How drag sharpens a T cell’s view on antigen

    No full text

    A Multimodal Platform for Simultaneous T-cell Imaging, Defined Activation, and Mechanobiological Characterization

    No full text
    T-cell antigen recognition is accompanied by extensive morphological rearrangements of the contact zone between the T-cell and the antigen-presenting cell (APC). This process involves binding of the T-cell receptor (TCR) complex to antigenic peptides presented via MHC on the APC surface, the interaction of costimulatory and adhesion proteins, remodeling of the actin cytoskeleton, and the initiation of downstream signaling processes such as the release of intracellular calcium. However, multiparametric time-resolved analysis of these processes is hampered by the difficulty in recording the different readout modalities at high quality in parallel. In this study, we present a platform for simultaneous quantification of TCR distribution via total internal reflection fluorescence microscopy, of intracellular calcium levels, and of T-cell-exerted forces via atomic force microscopy (AFM). In our method, AFM cantilevers were used to bring single T-cells into contact with the activating surface. We designed the platform specifically to enable the study of T-cell triggering via functionalized fluid-supported lipid bilayers, which represent a widely accepted model system to stimulate T-cells in an antigen-specific manner. In this paper, we showcase the possibilities of this platform using primary transgenic T-cells triggered specifically via their cognate antigen presented by MHCII

    A Multimodal Platform for Simultaneous T-cell Imaging, Defined Activation, and Mechanobiological Characterization

    No full text
    T-cell antigen recognition is accompanied by extensive morphological rearrangements of the contact zone between the T-cell and the antigen-presenting cell (APC). This process involves binding of the T-cell receptor (TCR) complex to antigenic peptides presented via MHC on the APC surface, the interaction of costimulatory and adhesion proteins, remodeling of the actin cytoskeleton, and the initiation of downstream signaling processes such as the release of intracellular calcium. However, multiparametric time-resolved analysis of these processes is hampered by the difficulty in recording the different readout modalities at high quality in parallel. In this study, we present a platform for simultaneous quantification of TCR distribution via total internal reflection fluorescence microscopy, of intracellular calcium levels, and of T-cell-exerted forces via atomic force microscopy (AFM). In our method, AFM cantilevers were used to bring single T-cells into contact with the activating surface. We designed the platform specifically to enable the study of T-cell triggering via functionalized fluid-supported lipid bilayers, which represent a widely accepted model system to stimulate T-cells in an antigen-specific manner. In this paper, we showcase the possibilities of this platform using primary transgenic T-cells triggered specifically via their cognate antigen presented by MHCII
    corecore