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ABSTRACT Dimerization or the formation of higher-order oligomers is required for the activation of ErbB receptor tyrosine kinases.
The heregulin (HRG) receptor, ErbB3, must heterodimerize with other members of the family, preferentially ErbB2, to form a functional
signal transducing complex. Here, we applied single molecule imaging capable of detecting long-lived and mobile associations to mea-
sure their stoichiometry and mobility and analyzed data from experiments globally, taking the different lateral mobility of monomeric
and dimeric molecular species into account. Although ErbB3 was largely monomeric in the absence of stimulation and ErbB2 co-
expression, a small fraction was present as constitutive homodimers exhibiting a ~40% lower mobility than monomers. HRG stimu-
lation increased the homodimeric fraction of ErbB3 significantly and reduced the mobility of homodimers fourfold compared to consti-
tutive homodimers. Expression of ErbB2 elevated the homodimeric fraction of ErbB3 even in unstimulated cells and induced a ~2-fold
reduction in the lateral mobility of ErbB3 homodimers. The mobility of ErbB2 was significantly lower than that of ErbB3, and HRG
induced a less pronounced decrease in the diffusion coefficient of all ErbB2 molecules and ErbB3/ErbB2 heterodimers than in the
mobility of ErbB3. The slower diffusion of ErbB2 compared to ErbB3 was abolished by depolymerizing actin filaments, whereas
ErbB2 expression induced a substantial rearrangement of microfilaments, implying a bidirectional interaction between ErbB2 and
actin. HRG stimulation of cells co-expressing ErbB3 and ErbB2 led to the formation of ErbB3 homodimers and ErbB3/ErbB2 hetero-
dimers in a competitive fashion. Although pertuzumab, an antibody binding to the dimerization arm of ErbB2, completely abolished the
formation of constitutive and HRG-induced ErbB3/ErbB2 heterodimers, it only slightly blocked ErbB3 homodimerization. The results
imply that a dynamic equilibrium exists between constitutive and ligand-induced homo- and heterodimers capable of shaping trans-
membrane signaling.

SIGNIFICANCE ErbB3 is a growth factor receptor whose activation by its ligand, heregulin, leads to its homodimerization
and heterodimerization with ErbB2. We applied two-color single molecule tracking and counting to quantitate the homo-
and heterodimerization of ErbB3. Because of significant improvements in the applied method, introduced in the current
manuscript, we show that ErbB3 is mostly monomeric in the absence of stimulation and ErbB2 co-expression. Both ligand
stimulation and the presence of ErbB2 lead to significant retardation of ErbB3 lateral diffusion as well as increased
formation of ErbB3 homodimers. Ligand stimulation in the presence of ErbB2 also induced heterodimers of ErbB3 and
ErbB2. The results allow insight into the first steps of ErbB3 activation in a minimally perturbed system.

INTRODUCTION

The four ErbB receptors (ErbB1-4) constitute a family of
transmembrane proteins standing in the focus of interest of

basic researchers and clinicians. Upon ligand-induced, over-
expression- or mutation-driven activation of their intracel-
lular kinase domain phosphorylated tyrosine residues are
generated in their C-terminal part, leading to the activation
of the mitogen-activated protein kinase (MAPK), phosphati-
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dylinositol 3-kinase (PI3K), and signal transducer and acti-
vator of transcription (STAT) signaling pathways (1).
Because transphosphorylation is responsible for the genera-
tion of phosphotyrosine residues, receptor clustering is
required for activating these receptors. In the case of
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ErbB1, also known as epidermal growth factor (EGF) recep-
tor, monomeric inactive receptors undergo ligand-induced
dimerization accompanied by conformational changes in
the extracellular, transmembrane, and intracellular kinase
domains, culminating in the activation of the receptor
(2-4). ErbB4 is also believed to work according to this above
model (5). ErbB1 and ErbB4 can be considered to be full-
fledged receptors for EGF-like and heregulin (HRG)-type li-
gands, respectively, because they contain fully functional
ligand binding and tyrosine kinase domains (1). On the other
hand, ErbB2 and ErbB3 harbor only half of the activity
required for full activation, with ErbB2 lacking an activating
soluble ligand and ErbB3 containing a not fully functional ki-
nase domain (6). However, ErbB3/ErbB2 heterodimers
formed upon binding of HRG to ErbB3 constitute the most
potent oncogenic unit capable of strong activation of both
the MAPK and PI3K pathways (7). The major role of
ErbB2 is to enhance the potency and durability of transmem-
brane signaling by serving as the preferred heterodimeriza-
tion partner for all other ErbB proteins (8).

Binding of its ligand, HRG, to ErbB3 induces the closed
conformation of the receptor to adopt an extended structure
in which a loop capable of promoting dimerization is
exposed (9,10). These structural changes are similar to
what is observed after the binding of EGF to ErbB1 (3).
The mechanism of ligand-induced ErbB3 activation beyond
these first steps, however, is controversial. Both ErbB3 ho-
modimerization and ErbB3/ErbB2 heterodimerization are
believed to involve the dimerization arm, and therefore,
the formation of these dimers must be mutually exclusive
(11). Besides the back-to-back dimers promoted by the
dimerization arm, ErbB1 has been shown to form several
structurally unrelated clusters (12,13), which may also exist
for ErbB3. Large-scale homoclusters of ErbB2 and ErbB3
of undefined stoichiometry have been shown to be disrupted
by HRG (14-16). The effect of ligand binding on ErbB3 ho-
modimers is debated. Although HRG had no effect on the
stability of ErbB3 homodimers according to chemical
cross-linking experiments (14), results of single particle
tracking implied that the growth factor stabilizes ErbB3 ho-
modimers, which are signaling competent and even more
stable than ErbB3/ErbB2 heterodimers (17). Although the
HRG-induced stabilization of ErbB3/ErbB2 heterodimers
is widely accepted (11,17,18), questions linger about the
molecular mechanism of signal transduction by this hetero-
dimer. The kinase domains are not equivalent in the dimer
because the kinase of the ligand-bound receptor (“cis-ki-
nase”) is assumed to adopt the receiver conformation and
to be activated first by its dimerization partner (4,19). Ac-
cording to this model, the ErbB3 kinase (“cis-kinase”)
must be activated by ErbB2 in an ErbB3/ErbB2 heterodimer
so that ErbB2 can be phosphorylated. Because ErbB3 is
thought to be kinase dead (6), several suggestions have
been put forward to resolve this contradiction: 1) the kinase
domain of ErbB3 has been suggested to be conditionally
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active in the presence of ErbB2 (17,20); 2) ErbB2 can
also be activated by secondary dimerization (17,21); and
3) tetramers or even larger-scale clusters can also provide
a platform in which dimers can transactivate each other
(13,18).

Detailed biophysical studies revealed the existence of
three hierarchical layers of receptor clusters: 1) dimerization
driven by protein-protein interactions; 2) oligomerization
generated by preferential distribution in lipid microdomains
(referred to as large-scale clusters in the previous para-
graph); and 3) clusters with a diameter of ~100 nm or
more visible even in light microscopy (22,23). Biophysical
techniques show different potentials to detect these clusters,
depending on their size, stability, and mobility (22,24).

The aim of the current investigation was to analyze homo-
and heterointeractions of ErbB3 in living, minimally per-
turbed quiescent and HRG-activated cells. We used a single
molecule imaging technique termed “thinning out clusters
while conserving stoichiometry of labeling” (TOCCSL)
(25) to quantitatively measure the mobility and dimerization
of ErbB3. We define clusters from the standpoint of TOCCSL
as long-lived and mobile entities. Our results show that the
overwhelming majority of ErbB3 is monomeric in the absence
of HRG stimulation and ErbB2 co-expression. Constitutive
ErbB3 homodimers, accounting for ~10% of ErbB3, exhibit
retarded lateral diffusion, which is further reduced by HRG
stimulation. In the presence of ErbB2 co-expression, ErbB3
undergoes HRG-induced homodimerization as well as heter-
odimerization with ErbB2. The lateral mobility of ErbB2 was
significantly smaller than that of ErbB3, and it was less sub-
stantially affected by HRG. Pertuzumab (PRT), an antibody
binding to the dimerization arm of ErbB2, blocked HRG-
induced heterodimerization but inhibited the formation of
ErbB3 homodimers only partially. The results show how a dy-
namic equilibrium established in homo- and heterodimeriza-
tion events accompanies activation of ErbB3.

MATERIALS AND METHODS
Cells

Chinese hamster ovary (CHO) cells were obtained from the American Type
Culture Collection (Manassas, VA) and cultured according to its specifica-
tions. The CHO-ErbB2 cell line was generated as described previously (26),
and it was continuously cultured in Dulbecco’s Modified Eagle Medium
supplemented with 10% fetal calf serum and 20 ug/mL G418. CHO-
ErbB3 and CHO-ErbB2-ErbB3 cells were generated by transient transfec-
tion of the ErbB3-pcDNAG plasmid using TurboFect Transfection Reagent
(Thermo Fisher Scientific, Waltham, MA) into wild-type CHO and CHO-
ErbB2 cells, respectively. To visualize actin filaments, cells were trans-
fected with Life Act-GFP (plasmid kindly provided by Mikl6s Kellermayer,
Department of Biophysics and Radiation Biology, Semmelweis University,
Budapest, Hungary) using TurboFect. LifeAct-GFP has been shown to be
superior to actin-GFP for studying the dynamics and organization of micro-
filaments in live cells (27). For microscopy, cells were harvested with Ac-
cutase (Sigma-Aldrich, St. Louis, MO) and transferred to fibronectin-coated
eight-well chambered coverglass (Thermo Scientific Nunc, Rochester, NY).
Fibronectin-coating of coverslips was carried out by covering them with



125 uL of a 50 ug/mL fibronectin (Sigma-Aldrich) solution for 2 h, fol-
lowed by removing the solution and drying. For flow cytometry, cells
were harvested by trypsinization.

Cloning

To generate the ErbB3-pcDNA construct, nontagged wild-type ErbB3 was
amplified from the erbB3—pEGFP-N1 plasmid (kind gift of Donna Arndt-
Jovin, Max Planck Institute for Biophysical Chemistry, Gottingen, Ger-
many) with Phusion High-Fidelity DNA Polymerase (Thermo Fisher
Scientific), according to the recommendations of the manufacturer. The
primers used for the PCR reaction introduced a Kpnl and a Notl cleavage
site at the end of the amplified sequence (5-ATCTGCGGTACCATGA
GGGCGAACGACGCTCT, 5'-TATCGTGCGGCCGCTTACGTTCTCTG
GGCATTA). The PCR product was isolated from agarose gel and cleaned
up with NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Diiren,
Germany). Both the PCR product and the pcDNA6 (Thermo Fisher Scien-
tific) plasmid was digested with Kpnl (Thermo Fisher Scientific) and Notl
(Thermo Fisher Scientific), and these DNA fragments were ligated with T4
DNA ligase (Thermo Fisher Scientific) as recommended by the manufac-
turer. Cloning was confirmed with restriction analysis and sequencing.

Antibodies and chemicals

The monoclonal antibody H3.90.12 against ErbB3 was purchased from
Thermo Fisher Scientific, whereas the anti-ErbB2 antibody 76.5 was pro-
duced from the supernatant of a hybridoma obtained from Yosef Yarden
(The Weizmann Institute of Science, Rehovot, Israel). The isolated full-
length antibodies were digested with papain to generate Fab fragments
using the Pierce Fab Preparation Kit (Thermo Fisher Scientific). Papain,
a nonspecific thiol-endopeptidase, enzymatically cleaves the whole immu-
noglobulin G (IgG) and creates two separate Fab fragments and one Fc frag-
ment per antibody molecule. The reaction can be easily stopped by
removing the resin from the IgG solution, and the result is an enzyme-
free digestion product. Fab fragments were purified from partly digested
or undigested full-length antibodies via gel filtration (Superdex 200, 10/
300 GL; GE Healthcare Life Sciences) using the AKTA pure chromatog-
raphy system (GE Healthcare Life Sciences, Pittsburgh, PA). Fab fragments
were conjugated with Alexa Fluor 488 (AF488) and Alexa Fluor 647
(AF647, Thermo Fisher Scientific) using the N-Hydroxysuccinimide ester
derivatives of the dyes according to the instructions of the manufacturer.
The fluorescent dye-conjugated Fab fragments were separated from an
excess of unreacted dye by means of gel filtration (Superdex 75, 10/300
GL; GE Healthcare Life Sciences). The protein-containing fractions were
concentrated with Amicon Ultra-4 centrifugal filters (10 kDa cutoff; Milli-
poreSigma, Burlington, MA) to 1 mg/mL and stored in 50% glycerol and
phosphate-buffered saline (PBS) at —20°C. The degrees of labeling of
the fluorescent dye-conjugated Fab fragments were 1.5 (Fab 90.12-
AF488), 1.8 (Fab 90.12-AF647), and 1.4 (Fab 76.5-AF488), as determined
by spectrophotometry at 280 nm and at the corresponding absorption
maximum of the fluorescent dye (488 and 647 nm).

The following antibodies were used in the tyrosine phosphorylation ex-
periments: mouse monoclonal antibody PY99 against phosphotyrosine
(Santa Cruz Biotechnology, Dallas, TX); rabbit monoclonal antibody
ab133443 against ErbB3 phosphorylated at Y1289 (Abcam, Cambridge,
UK); AF647 goat anti-mouse IgG; and AF647 goat anti-rabbit IgG (Thermo
Fisher Scientific). The EGF domain of HRG-B1 was obtained from R&D
Systems (Minneapolis, MN).

Immunofluorescence measurements

Cells plated in fibronectin-coated, eight-well chambered coverglass 1 day
before the measurement were washed in cold PBS and incubated at 37°C
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in the presence or absence of 200 ng/mL (25 nM) HRG followed by fixation
in 3.7% formaldehyde for 30 min on ice. After washing and permeabiliza-
tion with 0.1% (v/v) Triton X-100, cells were labeled with antibodies
against phosphotyrosine or tyrosine phosphorylated ErbB3 for 30 min on
ice followed by washing and secondary staining with AF647-conjugated
goat anti-mouse IgG or with AF647-conjugated goat anti-rabbit IgG for
30 min on ice. Finally, the samples were washed in PBS followed by fixa-
tion in 1% formaldehyde. Images were acquired with a Zeiss LSM 700
confocal microscope (Carl Zeiss, Oberkochen, Germany) using a 63x oil
immersion objective (NA = 1.35). AF488 was excited at 488 nm, and its
fluorescence was detected above 510 nm. AF647 was excited at 633 nm,
and its fluorescence was collected above 670 nm.

Labeling and treatment of cells for TOCCSL
and FRAP experiments

Cells were plated in fibronectin-coated, eight-well chambered coverglass
30 min before the measurement. The cells were washed in PBS and labeled
with a mixture of AF488- and AF647-conjugated Fab fragments at an equi-
molar ratio (1010 ug/mL). They were incubated at room temperature for
15 min. To remove unbound fluorescent probes, the cells were washed twice
in PBS, followed by incubation with or without 200 ng/mL (25 nM) HRG.
This labeling protocol led to homogeneous surface staining for both colors.

Determination of the dissociation constant of Fab
fragments

For cell surface labeling, 0.25-1 x 10° CHO-ErbB2-ErbB3 cells were
stained with AF488-conjugated Fabs for 30 min on ice and washed three
times with FACS buffer (PBS, 1% bovine serum albumin, and 0.02%
NaN3). The dissociation constants (K4) of AF488-conjugated and unlabeled
Fabs were measured by a Becton Dickinson LSR II flow cytometer (BD
Biosciences, Franklin Lakes, NJ). Despite labeling on ice, AF647-coupled
anti-ErbB3 Fab accumulated intracellularly, preventing an accurate mea-
surement of membrane-bound intensity by flow cytometry. Therefore,
CHO-ErbB2-ErbB3 cells were labeled with the AF647-conjugated Fab in
chambered coverglass, and they were imaged with a Zeiss LSM 700
confocal microscope as described above. Confocal microscopic images
were analyzed with the DIPimage toolbox (Delft University of Technology,
Delft, the Netherlands) under MATLAB (The Mathworks, Natick, MA).
The cell membrane was identified by a manually seeded watershed algo-
rithm (28,29) using a custom-written interactive algorithm implemented
in DIPimage/MATLAB. The fluorescence intensity was evaluated in the
membrane mask determined by manually seeded watershed segmentation
after subtracting the background determined in a cell-free area of an image.
The mean fluorescence intensity of flow cytometric histograms of cells
labeled with AF488-conjugated Fab or the mean membrane intensity of
cells labeled with AF647-coupled Fab were used for further analysis. For
determining the Ky of labeled Fabs, equilibrium binding of a concentration
series of fluorophore-conjugated Fabs was measured. To determine the Ky
of unlabeled Fabs, cells were labeled with a concentration series of unla-
beled Fab in the presence of a constant concentration of labeled Fab. The
mean fluorescence intensity of samples was determined after gating out
cell fragments and debris on the forward and side scatter dot plot in ReFlex,
a flow cytometry evaluation program (30). To determine the Ky of AF488-
and AF647-conjugated Fab fragments, we measured the equilibrium bind-
ing of a concentration series of the corresponding Fab fragments. The K4 of
fluorescent Fabs was determined by fitting a one-site, specific binding
model to the measured data points. To determine the K4 of unlabeled Fab
fragments, cells were labeled with a concentration series of unlabeled
Fab in the presence of a constant concentration of AF488- or AF647-con-
jugated Fab fragments. The K of unlabeled Fabs was calculated by fitting
a one-site, competitive binding model to the data points.
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Single molecule microscopy

Single molecule experiments were performed as described (31,32). Briefly,
an Axiovert 200 microscope equipped with a 100x NA = 1.46 Plan-Apo-
chromat objective (Carl Zeiss) was used for illuminating samples in objec-
tive-based total internal reflection (TIR) configuration via the epiport by
488-nm (Sapphire; Coherent, Santa Clara, CA) or 640-nm (iBeam SMART;
TOPTICA Photonics, Munich, Germany) laser light with a typical power of
0.5-5 kW/cm? on the sample. The experiments were carried out at room
temperature to slow down the dissociation of Fabs. For exact timing of
the 488-nm laser, the beam path was equipped with an acousto-optic modu-
lator (Isomet, Manassas, VA). A slit aperture (Thorlabs, Newton, NJ) with a
width of ~10 um in the sample plane was used as a field stop. An in-house
written program package implemented in LABVIEW together with a high-
speed analog output card (National Instruments, Austin, TX) were used to
generate timing protocols. Emission light was separated from excitation by
a dichroic mirror (zt488/640 rpc; Chroma Technology, Bellows Falls, VT),
split into two-color channels equipped with appropriate filters (HQ585/
40m, HQ700/75m; Chroma) using a dual-view system (Photometrix,
Kew, Australia), and imaged on a back-illuminated electron-multiplying
charge-coupled device camera (iXon Ultra 897; Andor Technology, Belfast,
UK). An exemplary laser intensity and pulse duration protocol is provided
in Fig. 1. After recording prebleach images with a power density of 0.5 kW/
cm? and an illumination time of t;; = 5 ms (Fi 2. 1 7), samples were bleached
with a laser pulse applied for 700 ms with a power density of 5 kW/cm?.
After a recovery time of 5-10 s, TOCCSL images were recorded with the
same settings as for the prebleach images (Fig. 1 iii). Photobleaching was
checked by recording images 10 ms after the bleach pulse (Fig. 1 ii).
Although the bleach pulses for both color channels were applied simulta-
neously, the prebleach and TOCCSL images were recorded with 20-ms
time gaps between the two channels.

Data analysis in single molecule microscopy

A detailed description of the applied co-localization analysis has been pro-
vided previously (32). For precise alignment of both color channels, fluo-
rescent multicolor beads (TetraSpeck; Thermo Fisher Scientific) were
immobilized on coverslips and imaged under conditions identical to those
used for TOCCSL experiments. Positions of beads in both color channels
were determined with custom-written MATLAB scripts based on a
maximal-likelihood estimator and used to calculate the relative shift and
stretch of the two-color channels with respect to each other. In general, po-
sitions of the same bead imaged in two colors were aligned with accuracies
down to ~20 nm, which can be attributed to the correction error of the
method because localization errors were found to be smaller than 5 nm.
For TOCCSL data on living cells, single molecule positions were deter-
mined and corrected, and positions found in both color channels within a
distance of one camera pixel (i.e., 160 nm) were counted as co-localized.
For co-localization events, virtual distances between AF488-ErbB3-Fab
and AF647-ErbB3-Fab signals were determined. The number of false-pos-
itive co-localizations was determined by mirroring the coordinates of one
color channel alongside the x and y axis through the center of mass of all
signals before applying the search algorithm for co-localization. Co-local-
ization fractions were calculated by counting all co-localized signals, sub-
tracting false positives, correcting for nonequimolar labeling and for the
presence of unlabeled ErbB3 (i.e., ErbB3 bound by an unlabeled Fab),
and correcting for the difference in diffusion coefficients, as outlined in
the Supporting Materials and Methods. Single molecule tracking was per-
formed as described previously (33). A msd versus time-lag analysis was
used to determine the diffusion coefficient. Mean-squared displacements
(msd) were calculated from all trajectories of all cells for a certain condition
and plotted as a function of time lags (#1,¢). Using the first two data points,
the diffusion was calculated by using the formula msd = 4 D t),, + 4 nyz,
where g, denotes the localization precision. As described elsewhere, using
only the first two data points provides the best estimate of the diffusion co-
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efficient (33). For the determination of the error of the diffusion coefficient,
a sampling approach was used. Random numbers for msd values were
drawn from a Gaussian-shaped distribution (with a mean equal to the
msd, and a SD identical to the SD of squared displacements for the respec-
tive time lag) for the first two time lags, and the diffusion coefficient was
calculated. This procedure was repeated 1000 times, and the SD, represent-
ing the reliability of fitting, was determined.

FRAP experiments

FRAP experiments were carried out similarly to what was described in the
Single molecule microscopy. To avoid bleaching of dyes during the recov-
ery phase, the laser power for the pre- and postbleach images was further
reduced to ~30 W/cm?. After the bleach pulse, up to 120 postbleach images
were recorded with a time lag of t,, = 2 s. For correcting photobleaching
during image acquisition, fast image sequences with t;,, = 15 ms were re-
corded. For calculation of the photobleaching rate, kpj.qc1, the background-
corrected brightness values for all images, /(i), were determined with FIJI,
and an exponential decay curve was fitted in MATLAB as follows:

1) = To(e "t M

with Ij as the initial brightness.

FRAP data was analyzed with software packages implemented in MAT-
LAB corrected for photobleaching, and a nonlinear least-square fit was used
to determine the mobile fraction, f,,, as follows:

I(l ° tlag)
Ipre

— (1 ef'i“g), @

where I(i+t;,,) is the photobleaching and background-corrected brightness
in image i, I, is the brightness of the prebleach image, and 7 is the char-
acteristic constant for fluorescence recovery.

Each recorded cell was analyzed individually before data were pooled to
calculate the mean and SD of mobile fractions.

Airyscan microscopy

The cell culture solution on cells plated on eight-well chambered coverglass
1 day before the measurement was replaced by Hank’s balanced salt solu-
tion supplemented with 10 mM glucose. Imaging was performed using the
“superresolution” mode of the Airyscan module of a Zeiss LSM880
confocal microscope (Carl Zeiss) at 37°C. LifeAct-GFP was excited at
488 nm, and its emission was collected between 495 and 620 nm. Image
stacks were obtained with a pixel size of 42 nm and a separation distance
between consecutive slices of 300 nm using a 40 x water immersion objec-
tive (NA = 1.2).

RESULTS

HRG-driven homodimerization of ErbB3 in the
absence of ErbB2 co-expression

We selected CHO cells for all experiments because they do
not express ErbB proteins (8). Cells were transiently trans-
fected with human ErbB3 and responded to HRG stimula-
tion in accordance with the previous results (8) (i.e., HRG
did only increase tyrosine phosphorylation of ErbB3 in the
presence of ErbB2 co-expression) (Fig. S1).

For single molecule experiments, CHO cells were seeded
onto fibronectin-coated glass coverslips and allowed to
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FIGURE 1 Experimental strategy for detection of ErbB3 dimerization. (A) The laser power/pulse duration and image acquisition protocol applied in two-
color TOCCSL experiments is indicated. The inset shows a zoom into the timing protocol with a delay time of 20 ms between recordings of the green and the
red color channel. (B) ErbB3-positive CHO cells growing on fibronectin coated coverslips were quantitatively decorated with equimolar amounts of AF488-
and AF647-labeled monovalent antibody fragments (AF488-ErbB3 Fab and AF647-ErbB3 Fab). A defined CHO cell region was illuminated in TIR mode by
using an aperture (dashed area) in the excitation pathway. Emission was split into two-color channels and imaged on the same electron-multiplying charge-
coupled device camera. The average ErbB3 surface density was too high to allow for the resolution of single entities (i), yielding many ErbB3 molecules per
camera pixel (see sketch below). After applying a 0.7-s long photobleaching pulse, all fluorophores were ablated as can be seen in the image recorded 10 ms
after bleaching (ii). At the onset of the recovery process after 5-10 s, single probes that have diffused from the masked region into the central field of view can
be seen as diffraction limited signals (iii). Single diffraction limited signals were detected in both color channels (green and red circles), and homoassociation
was determined by the co-localization of signals within a radius of 160 nm (yellow circles). After the TOCCSL image, an additional image sequence was
recorded and allowed for tracking of co-localized and individual ErbB3 signals for the subsequent determination of diffusion constants (laser pulses /v in the
upper panel). (C) A sketch showing the effect of the photobleaching protocol on putative ErbB3 homodimers is shown. To see this figure in color, go
online.
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adhere before they were labeled with a mixture of Alexa
Fluor 488-coupled (AF488) and Alexa Fluor 647-coupled
(AF647) Fab fragments against ErbB3 (AF488-ErbB3-Fab
and AF647-ErbB3-Fab). The concentration ratio of the
two Fabs was chosen in accordance with their determined
affinities for ErbB3 (Table S1) to achieve similar labeling
efficiency of the two colors. The high ErbB3 density at
the plasma membrane prevented a direct assessment of
ErbB3 oligomerization, so we utilized TOCCSL to stoichio-
metrically reduce the surface density down to a level in
which single molecules can be observed as well-separated
spots (25,31,34). Fig. 1 shows the principle of two-color
TOCCSL (32). For estimating the surface density of both la-
bels, we first recorded a prebleach image in both colors us-
ing an epifluorescence microscope configured in TIR mode
(Fig. 1 7). Next, a short, two-color high-power laser pulse
was used to photobleach all active fluorophores within a
small spatially defined area on the plasma membrane facing
the coverslip. We verified complete photobleaching by
recording a second image immediately after bleaching
(Fig. 1 ii). During the recovery phase, fluorescently labeled
ErbB3 receptors diffused from the masked cell surface back
into the field of view and had not undergone any bleaching.
At the onset of this process (here, between 5 and 10 s), the
density of fluorescent molecules was low enough to detect
them as well-separated diffraction limited signals in the
so-termed TOCCSL image (Fig. 1 iii, green and red circles).
Single molecule events corresponding to co-localized
AF488- and AF647-ErbB3-Fabs could be identified via
the registration of both color channels and are referred to
as ErbB3 homodimers (Fig. 1 iii, yellow circles). Consecu-
tive recording of an image sequence allowed for the tracking
of individual signals visible in both color channels and of
co-localized ErbB3 signals (Fig. | iv).

For the first species, corresponding to all recovered
ErbB3 signals, we determined a diffusion coefficient of
0.084 = 0.005 um?/s (see Table 1 for a list of determined
diffusion constants). This value can be regarded also as
the diffusion constant of ErbB3 monomers because this is
the dominant species contributing the most to tracking
data. If the analysis was restricted to co-localized ErbB3
spots, the diffusion constant was 0.052 = 0.022 ,umz/s, sug-
gesting that homodimers of ErbB3 move more slowly.

Because TOCCSL is based on the recovery of fluorescent
signals due to the diffusion of unbleached membrane com-
ponents into the photobleached region, different diffusion
coefficients of monomers and dimers influence the fractions
of these species observed in the bleached area. We devel-
oped a framework in which the different diffusion coeffi-
cients of monomers and dimers are explicitly considered
and determined the corrected amount of ErbB3 monomers
and homodimers. We opted to neglect larger oligomers for
the following reasons: 1) in single-color TOCCSL experi-
ments, taking the brightness of individual mobile clusters
into consideration, monomers and dimers accounted for
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~90% of events (Fig. S2); and 2) because of cytoskeletal
anchoring and induced membrane curvature, the apparent
diffusion coefficient of larger clusters is expected to be
much smaller than those of monomers and dimers, prevent-
ing their return to the bleached area (35). Our analysis
yielded that ~23% of all ErbB3 present on the membrane
of CHO cells was associated to constitutive homodimers
(Fig. 2 A).

We next addressed ErbB3 homoassociation under
activating conditions. Cells were treated with HRG, and
two-color TOCCSL experiments were performed in the
presence of HRG. Interestingly, the fraction of ErbB3 in
homodimers increased ~4-fold (Fig. 2 A). Statistical sig-
nificance of all comparisons is shown in Table S3. Tracking
of all ErbB3 signals after HRG stimulation yielded a
similar mobility as for ErbB3 homodimers under nonstimu-
latory conditions (0.053 + 0.004 um?/s). The diffusion
constant of ErbB3 homodimers was found to be reduced
to 0.014 = 0.02 ,umZ/s (Table 1). Taken together, HRG
strongly increases the fraction of stable ErbB3 homoasso-
ciates at the plasma membrane, accompanied by a reduc-
tion of their overall mobility.

Homodimerization of ErbB3 in the presence
of ErbB2 co-expression

To examine the effect of ErbB2 on the constitutive and
ligand-induced homodimerization of ErbB3, CHO-ErbB2
cells, stably expressing ErbB2 at 200,000 = 15,000 pro-
teins/cell according to flow cytometry, were transiently
transfected with ErbB3. Two-color TOCCSL experiments
were performed as described before to determine the frac-
tion of ErbB3 present in homodimers and to determine the
respective diffusion coefficients. It turned out that in the
presence of ErbB2, ~70% of ErbB3 was associated to ho-
modimers (Fig. 2 B). Although the mere presence of unla-
beled ErbB2 elevated the base level of ErbB3 homodimers
close to the level seen under stimulating conditions in the
absence of ErbB2, stimulation with HRG further increased
the fraction of ErbB3 in homodimers up to ~90% (Fig. 2
B). Tracking of ErbB3 showed that the presence of ErbB2
did not substantially alter the mobility of all recovered
ErbB3 molecules; however, the diffusion coefficient of
ErbB3 homodimers was drastically reduced to one-third of
the initial value compared to all ErbB3 molecules (Table
1). The diffusion coefficients of all ErbB3 molecules and
ErbB3 homodimers after HRG stimulation was reduced to
a similar extent to what was observed in the absence of
ErbB2 co-expression (Table 1).

To test for a direct effect of the presence of ErbB2 on
ErbB3 homodimerization, we repeated two-color TOCCSL
experiments with cells treated with PRT, an antibody bind-
ing to the dimerization arm of ErbB2 (36,37). Indeed, PRT
reduced the fraction of ErbB3 in homodimers in the absence
of stimulation down to ~26% (Fig. 2 B; Table S3). In



Homo- and Heteroassociations of ErbB3

TABLE 1 Diffusion Constants of Monomeric and Dimeric Species of ErbB3
Molecule Species Cell Line (Fluorescent Labels) HRG PRT  Diffusion Coefficient ,umz/s, +SD (n)
Homodimerization All ErbB3 CHO-ErbB3 (AF488-ErbB3-Fab, - - 0.084 = 0.005 (1991)
experiment Co-localized ErbB3 AF647-ErbB3-Fab) — — 0.052 = 0.022 (81)
All ErbB3 + - 0.053 = 0.004 (1657)
Co-localized ErbB3 + — 0.014 = 0.02 (85)
All ErbB3 CHO-ErbB2-ErbB3 (AF488-ErbB3-Fab, — — 0.095 =+ 0.005 (7351)
Co-localized ErbB3 A647-ErbB3-Fab) — — 0.031 = 0.06 (62)
All ErbB3 + - 0.056 = 0.002 (9496)
Co-localized ErbB3 + — 0.018 = 0.006 (322)
All ErbB3 — + 0.053 = 0.004 (3195)
Co-localized ErbB3 — + 0.043 + 0.012 (95)
All ErbB3 + + 0.026 = 0.004 (3050)
Co-localized ErbB3 + + 0.017 = 0.007 (136)
Heterodimerization All ErbB2 CHO-ErbB2-ErbB3 (AF488-ErbB2-Fab, — — 0.044 = 0.003 (1842)
experiment All ErbB3 A647-ErbB3-Fab) — — 0.067 = 0.006 (789)
Co-localized ErbB3/ErbB2 - — 0.017 = 0.006 (80)
All ErbB2 + - 0.034 = 0.002 (3394)
All ErbB3 + - 0.040 = 0.008 (390)
Co-localized ErbB3/ErbB2 + — 0.010 = 0.007 (26)
All ErbB2 — + 0.018 = 0.002 (2791)
All ErbB3 - + 0.054 + 0.006 (749)
Co-localized ErbB3/ErbB2 - + 0.022 + 0.008 (82)
All ErbB2 + + 0.029 =+ 0.003 (2358)
All ErbB3 + + 0.065 = 0.006 (725)
Co-localized ErbB3/ErbB2 + + 0.026 + 0.017 (42)

Untreated, HRG-, and/or PRT-pretreated CHO cells expressing ErbB3 in the absence (CHO-ErbB3) or presence (CHO-ErbB2-ErbB3) of ErbB2 were labeled
with AF488- and AF647-conjugated Fabs as shown in the table. The mean diffusion coefficients (+ SD) were determined by tracking individual fluorescent
spots. Error estimation was carried out using a sampling approach as described in Materials and Methods. The number of trajectories (n) analyzed is also
given in the table. Rows labeled by headings “All ErtbB2” or “All ErbB3” display data for all fluorescent spots of a certain color (e.g., a mixture of monomers
and dimers). Because of the overwhelming majority of monomeric events among trajectories, these values correspond to the diffusion coefficients of mono-
mers. The analysis was restricted to co-localized signals in the rows labeled by “Co-localized ErbB3” and “Co-localized ErbB3/ErbB2.”

addition, the antibody had a similar inhibitory effect on the
HRG-induced homodimerization (Fig. 2 B).

Our data hence show that the presence of ErbB2 directly
affects the amount of ErbB3 molecules associated to homo-
dimers as well as retards the diffusion of ErbB3 homodimers
in the plasma membrane under both HRG-stimulated and
nonactivating conditions.

Heterodimerization of ErbB3 with ErbB2 in the
absence and presence of HRG stimulation

CHO-ErbB2 cells transiently transfected with ErbB3 were
labeled with AF488-ErbB2-Fab and AF647-ErbB3-Fab to
measure the formation of ErbB3/ErbB2 heterodimers in
two-color TOCCSL experiments as well as the diffusion co-
efficients of heterodimers and individual ErbB2 and ErbB3
molecules. According to the surface densities determined in
the prebleach image of TOCCSL recordings, cells with
similar ErbB2 and ErbB3 expressions were selected. We
first determined the fraction of ErbB3 co-localizing with
ErbB2 in the absence of HRG stimulation (see Supporting
Materials and Methods for details of the correction and
Table S2 for all raw and corrected data) and found a
rather high base level of ~70% of ErbB3 being associated
to ErbB3/ErbB2 heterodimers (Fig. 2 C). Stimulation of

CHO-ErbB2 cells with HRG led to a further increase of
ErbB3/ErbB2 heterodimerization (~90%, Fig. 2 C). Our
tracking data revealed that ErbB2 had a twofold lower diffu-
sion coefficient than ErbB3 in the absence of stimulation
(Table 1). Given that the overwhelming majority of tracked
events correspond to monomers (Fig. S2), this difference
implies a fundamental difference between the diffusion of
ErbB2 and ErbB3. The analysis of step lengths of tracked
ErbB2 and ErbB3 events revealed that the distribution of
the diffusion rate of ErbB2 is more variable, spanning a
wider range of values (Fig. S3). Because actin filaments
were assumed to be behind the aforementioned difference,
the diffusional behavior of ErbB2 and ErbB3 was also
compared in latrunculin B-treated cells, in which actin fila-
ments were depolymerized. Although the difference be-
tween the diffusion coefficients of ErbB2 and ErbB3 was
smaller in control cells in these experiments, the latrunculin
B treatment completely abolished the difference between
ErbB2 and ErbB3 due to eliminating actin-related retarda-
tion of ErbB2 (Fig. 3; Fig. S3). Cortical actin filaments exert
a much smaller effect on ErbB3 than on ErbB2, evidenced
by the lack of a significant effect of latrunculin B on
ErbB3 diffusion. HRG treatment only slightly reduced the
diffusion coefficient of ErbB2 from 0.044 =+ 0.003 to
0.034 = 0.002 um?/s. The difference in diffusion constants
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FIGURE 2 The fraction of ErbB3 associated to homo- and heterodimers
in CHO-ErbB3 and CHO-ErbB2-ErbB3 cells determined by two-color
TOCCSL. The mean ( + standard error of the mean) of the homo- (black
bars) (A and B) and heterodimeric fractions (white bars) (C) of ErbB3
are shown under different treatment conditions (HRG, heregulin; PRT, per-
tuzumab). In TOCCSL recordings, co-localized signals were counted, the
respective numbers were corrected for labeling and for the different diffu-
sion constants of monomers and dimers, and finally, the fraction of ErbB3 in
dimers was calculated (see Supporting Materials and Methods for details of
the correction). The corrected values, shown in the figure, and the raw data
can be found in Table S2.
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FIGURE 3 Disruption of actin filaments abolishes the difference be-
tween the diffusion coefficients of ErbB2 and ErbB3. CHO-ErbB2-ErbB3
cells were treated with 1 uM latrunculin B for 10 min followed by labeling
these treated and control cells with fluorescent anti-ErbB2 and anti-ErbB3
Fab at an equimolar ratio (10-10 ug/mL). The ratio of the diffusion coeffi-
cients of ErbB2 and ErbB3 are plotted along with their standard error of the
means.

between the HRG-induced and constitutive ErbB3/ErbB2
heterodimers (0.01 + 0.007 um?/s vs. 0.017 + 0.007
um?/s) was not as pronounced as for ErbB3 homo-
oligomerization.

We next wanted to test whether the dimerization arm of
ErbB2 is involved in the formation of the observed
ErbB3/ErbB2 heterodimers. We hence incubated the cells
with PRT, which practically eliminated heterodimers in un-
stimulated cells and significantly reduced the HRG-induced
formation thereof (Fig. 2 C).

In summary, both constitutive and HRG-induced ErbB3/
ErbB2 heterodimers are present at high levels. Heterodimers
diffuse more slowly than ErbB3 homodimers and are inca-
pable of formation upon blockage of the dimerization arm
of ErbB2.

Effect of ErbB2 expression on actin filaments

The slower diffusion of ErbB2 compared to ErbB3 turned
out to be attributable to an intact actin cytoskeleton.
Next, we tested whether ErbB2 expression exerts any kind
of influence on the organization of microfilaments. ErbB2-
expressing and control cells were transfected with GFP-
LifeAct followed by imaging with Airyscanning confocal
microscopy. Whereas ErbB2-negative cells exhibited a
patchy distribution of actin in the image corresponding to
the submembrane plane, ErbB2-expressing cells were rich
in long actin stress fibers completely absent from control
cells. Representative images are shown in Fig. 4. These re-
sults establish that ErbB2 and actin filaments exert a recip-
rocal effect on each other.

Competition between the formation of ErbB3
homodimers and ErbB3/ErbB2 heterodimers

Utilizing CHO-ErbB2 cells and the above described two-
color TOCCSL strategies allow only for the separate



FIGURE 4 Airyscanning reveals significant rearrangement of actin fila-
ments as a result of ErbB2 expression. Control (A) and ErbB2-expressing
(B) CHO cells were transfected with LifeAct-GFP followed by Airyscan-
ning. Representative orthogonal sections reveal a striking effect of ErbB2
on the arrangement of subcortical actin filaments as evidenced by the for-
mation of long actin stress fibers. Image stacks have been made available
on Mendeley (https://doi.org/10.17632/yxjb58nwr3.1). To see this figure
in color, go online.

determination of ErbB3 homodimers and ErbB3/ErbB2 het-
erodimers. Whereas in the first set of experiments, ErbB3/
ErbB2 heterodimers are missed, ErbB3 homodimers cannot
be distinguished from single ErbB3 molecules in the second
set. We hence developed a mathematical model that allowed
for a global analysis of all data recorded in separate ErbB3
homodimer and ErbB3/ErbB2 heterodimer experiments (see
Supporting Materials and Methods for details). ErbB2 co-
expression reduced the fraction of ErbB3 in HRG-induced
homodimers from ~80% (Fig. 2 A) to ~45% (Fig. 5),
implying that competition takes place between the forma-
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FIGURE 5 Competition between the association of ErbB3 to homo- and
heterodimers. The corrected mean (+ standard error of the mean) of the
homo- (black bars) and heterodimeric fractions (white bars) of ErbB3 are
shown under different treatment conditions (HRG, heregulin; PRT, pertuzu-
mab). ErbB3 homo- and ErbB3/ErbB2 heterodimerization in CHO-ErbB2-
ErbB3 cells was determined in independent experiments and analyzed
based on a mathematical model accounting for the presence of ErbB3 ho-
modimers, ErbB3/ErbB2 heterodimers, and ErbB3 monomers.
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tion of ErbB3 homodimers and ErbB3/ErbB2 heterodimers.
HRG stimulation led to a higher fold increase of ErbB3 be-
ing recruited to homodimers than to ErbB3/ErbB2 hetero-
dimers. Treatment with PRT lowered the level of ErbB3 in
homodimers for both conditions and nearly abolished the as-
sociation of ErbB3 to ErbB3/ErbB2 heterodimers.

Fluorescence recovery after photobleaching
(FRAP) reveals immobilization of ErbB2 and
ErbB3 after HRG stimulation

Given the fact that in TOCCSL experiments, only informa-
tion about mobile species of ErbB2 and ErbB3 is gained and
information on immobile molecules is absent, we were
interested in the fraction of molecules probed by our
approach. A conventional FRAP experiment allowed us to
determine the mobile fraction of fluorescently labeled
ErbB2 and ErbB3 under different treatment conditions. Ac-
cording to these measurements, ~60% of ErbB3 was mobile
in the absence of stimulation and ErbB2 co-expression
(Table 2). Co-expression of ErbB2, in the absence of stimu-
lation, decreased the mobile fraction of ErbB3 to ~40%
(Table 2). Interestingly, HRG stimulation of ErbB3 in the
absence of ErbB2 co-expression had an effect similar to
that of ErbB2 co-expression in that the growth factor
reduced the mobile fraction of ErbB3 to ~40%. Stimulation
with HRG in the presence of ErbB2 co-expression almost
completely immobilized ErbB3, with the mobile fraction
being reduced to ~17%. We next addressed the mobile frac-
tion of ErbB2. We found that it was similar to that of ErbB3
and not influenced by HRG stimulation (Table 2). Although
the diffusion coefficients of monomeric and dimeric species
differed substantially, the low fraction of dimers precluded
the observation of a multiexponential FRAP recovery curve.
In summary, both HRG stimulation and ErbB2 co-expres-
sion decrease the mobile fraction of ErbB3.

DISCUSSION

In the presented study, we tracked single, mobile, fluores-
cently labeled ErbB2 and ErbB3 proteins in living cells to
measure their constitutive and HRG-induced dimerization,
which led to the following major findings: 1) ErbB3 is
mostly monomeric in the absence of stimulation and

TABLE 2 Mobile Fraction of ErbB2 and ErbB3 in the Absence
and Presence of HRG Stimulation

Mobile fraction CHO-ErbB3 CHO-ErbB2-ErbB3
ErbB3 0.62 = 0.09 041 = 0.11
ErbB3 + HRG 0.40 = 0.10 0.17 = 0.06
ErbB2 - 0.55 = 0.15
ErbB2 + HRG - 0.55 = 0.18

The mean (= SD) of the mobile fractions of ErbB2 and ErbB3 were deter-
mined in CHO-ErbB3 and CHO-ErbB2-ErbB3 cells before and after HRG
stimulation.
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ErbB2 co-expression; 2) the diffusion coefficient of consti-
tutive homodimers of ErbB3 is significantly lower than that
of monomers; 3) HRG induces both ErbB3 homodimers and
ErbB3/ErbB2 heterodimers, which compete with each
other; 4) these homo- and heterodimers differ in terms of
their sensitivity to inhibition by PRT; 5) the lateral diffusion
of ErbB2 is slower than that of ErbB3, which is attributable
to intact microfilaments; 6) ErbB2 is retarded less signifi-
cantly by HRG stimulation than ErbB3; and 7) ErbB2 facil-
itates the formation of ErbB3 homodimers and retards the
lateral mobility of these homodimers.

The single molecule technique TOCCSL used in our in-
vestigations detects mobile entities capable of returning to
the photobleached area. Although this shortcoming pre-
vents us from detecting immobile clusters, the combination
of diffusion measurements, detection of co-localizations
and the global analysis of homo- and heterodimerization
experiments allowed us to improve the reliability of
TOCCSL measurements significantly: 1) dimer fractions
were corrected by considering the slower lateral mobility
of dimers compared to monomers; and 2) although homo-
dimerization of ErbB3 was investigated independently of
its heterodimerization with ErbB2, results of these experi-
ments were analyzed together, permitting us to observe
their competitive formation upon HRG stimulation.
Although we made every effort to compensate for the
lower mobility of clustered proteins, trimers or even larger
clusters of ErbB3, suggested previously (15,18), may have
escaped detection because of their expected very slow
diffusion and have not been considered for any mathemat-
ical model in our study. Tracking methods typically involve
some kind of undersampling. In TOCCSL, it is manifested
in the undersampling of low-mobility species, which is
taken into consideration, as described in Fig. S4. Tracking
of Qdots, applied to studying ErbB proteins, involves sig-
nificant underlabeling of receptors (17,38). Although these
features set certain limits on the sensitivity of these
methods, mathematical corrections can shed light on the
undersampled fraction of receptors.

The diffusion coefficients obtained in the current exper-
iments using Fab labeling of ErbB2 and ErbB3 were larger
by a factor of two than those reported previously using
Qdot labeling (17). Qdots have been shown to induce a
35-fold reduction in the mobility of B cell receptors
compared to Fab labeling, revealing a significant effect of
bulky labels (39). The absence of an orders of magnitude
difference between the diffusion coefficients of ErbB pro-
teins reported in the current manuscript and those found
with Qdot labeling by Steinkamp et al. is explained by
the fact that our experiments were performed at room tem-
perature to reduce the dissociation of Fabs, whereas the ex-
periments with Qdot-labeled ErbB3 were performed at
37°C. From the comparison of these diffusion coefficients,
it seems that the room temperature-induced retarded diffu-
sion of Fab-labeled proteins is counterbalanced by the
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Qdot-dependent hindering of mobility. The PRT-induced
reduction in ErbB2 diffusion can also be attributed to the
bulky antibody. However, retardation of the mobility of
ErbB3 homodimers by coexpressed ErbB2 merits further
consideration because TOCCSL cannot distinguish bona
fide molecular dimers corresponding to crystallographic
dimeric structures from looser molecular associations
because of the uncertainty in localization. Therefore, we
envision the following two possible explanations: 1)
ErbB2 may slow down ErbB3 diffusion because of rear-
rangement of the submembrane actin meshwork or by
inducing membrane deformation or folding (40). Although
our TIR excitation strategy restricts the detection depth to
~150 nm, less deep membrane undulations may lead to
artifactual co-localizations and reduction of the apparent
lateral diffusion coefficient (41). 2) ErbB2 co-expression
may slow down ErbB3 homodimers by direct interactions
(i.e., the formation of trimers or larger complexes). The
fact that PRT treatment reduced the effect of ErbB2 co-
expression on the homodimer fraction of ErbB3 and on
ErbB3 mobility supports the hypothesis that direct involve-
ment of ErbB2 in facilitating ErbB3 homodimerization
may be partially behind these observations. The high frac-
tion of ErbB3 in homo- and heterodimers, as determined in
the two independent experimental settings, can also only be
explained by the formation of complexes of ErbB3 homo-
dimers and ErbB3-ErbB2 heterodimers. There is agreement
in the literature that membrane curvature, retarded diffu-
sion, and protein clustering in and beneath the membrane
are causally related to each other in a self-organized system
(35,42). Although our results cannot pinpoint which of
these effects is primarily caused by ErbB2 expression,
retarded diffusion and enhanced formation of ErbB3 homo-
dimers with or without membrane folding is obviously
caused by ErbB2.

Bidirectional interactions between ErbB2 and the cyto-
skeleton were directly tested in our experiments. The diffu-
sion of ErbB2 monomers is retarded by intact actin fibers
because the disruption of microfilaments equalized the
mobility of ErbB2 and ErbB3 by accelerating ErbB2 diffu-
sion without having a significant effect on ErbB3. In addi-
tion, ErbB2 exerts a reciprocal effect on the very filaments
retarding its diffusion by inducing the formation long actin
filaments resembling stress fibers. Although such an effect
of ErbB2 expression has not been reported to the best of
our knowledge, ErbB2 is known to be involved in the forma-
tion of structures in which actin plays a role. It has been
shown to be enriched in membrane protrusions (43), to
induce tumor cell migration through Memo and cofilin
(44), and to form linear chains in the plasma membrane
due to presumed interactions with actin (45). The fact that
ErbB2 overexpression induces membrane curvature (40),
together with the interdependence of membrane shape,
membrane protein clustering, and actin polymerization
(35), sets the stage for the observed effect of ErbB2 on actin



stress fibers and for the actin-dependent retardation of
ErbB2 diffusion.

Besides membrane folding and cytoskeletal interactions,
the expression level of ErbB3 and its interaction partners
is also expected to influence clustering and the mobility of
ErbB3. High expression level leads to high surface density,
which favors the formation of clusters according to the law
of mass action. It was the reason why the reported experi-
ments were carried out with cells not expressing millions
of ErbB3 on their surface, a circumstance that would have
led to artifactually high dimer fractions. We attempted to
correlate the surface density of ErbB3 with its dimer and
immobile fraction as well as with its diffusion coefficient.
Although there was an obvious tendency for the dimer frac-
tion to be larger at high surface densities (data not shown),
the curves were not quantitatively reproducible due to poor
statistics (low fraction of dimers) and a multitude of other
factors, which could also result in cell-to-cell variation in
the dimer fraction and the diffusion coefficient of dimers.
Therefore, we abandoned the cell-by-cell analysis, and the
reported results for dimerization, immobile fractions, and
diffusion coefficients were derived from pooled data sets,
increasing the reliability of the measurements.

Our study also revealed that ErbB3 homodimers differ
from ErbB3/ErbB2 heterodimers in two respects: 1)
ErbB3/ErbB2 heterodimers were completely absent from
PRT-pretreated samples, arguing that the dimerization arm
of ErbB2 is indispensable for such heterocomplexes,
whereas ErbB3 homodimerization was only partially in-
hibited by the anti-ErbB2 antibody, PRT. This latter finding
confirms that ErbB2 facilitates the formation of ErbB3 ho-
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modimers and also implies that transient ErbB3/ErbB2 in-
teractions might be involved in this effect (17). 2)
Constitutive ErbB3 homodimers diffuse significantly faster
than such ErbB3/ErbB2 heterodimers. Although the
mobility of heterodimers is not significantly influenced by
HRG treatment, the growth factor elicits a fourfold reduc-
tion in the diffusion coefficient of ErbB3 homodimers,
rendering it similar to that of ErbB3/ErbB2 heterodimers.
According to these results, three different classes of
dimers could be distinguished: 1) low-mobility dimers
(D ~ 0.01-0.015 um?/s), including HRG-induced ErbB3
homodimers in the presence and absence of ErbB2 co-
expression, and both constitutive and HRG-induced
ErbB3/ErbB2 heterodimers; 2) intermediate-mobility di-
mers (D ~ 0.03 um?/s), corresponding to constitutive
ErbB3 homodimers in the presence of ErbB2 co-expression;
and 3) high-mobility dimers (D ~ 0.05 um?/s), correspond-
ing to constitutive ErbB3 homodimers. Existence of these
dimer classes is supported by statistical analysis (Table
S4). We propose that cytoskeletal anchoring and the pres-
ence or absence of ErbB2-induced membrane folding, as ex-
plained in the previous paragraph, may be behind these
differences. Alternatively, different kinds of forces or pro-
cesses may be responsible for the formation of these dimer
classes. Dimers assembled by direct molecular interactions
and co-confined dimers (17,38), held together by lipid-
mediated or cytoskeletal interactions, are also expected to
differ in terms of their mobility. Because our method does
not allow us to differentiate between these dimeric species,
the low- and high-mobility classes may also differ regarding
the forces responsible for their assembly.

FIGURE 6 Model for the homo- and heteroclus-
tering of ErbB3. The model encompasses all the
evidence from tracking and co-localization mea-
surements. ErbB3 is assumed to have a closed
conformation in which the ligand binding site is
blocked, and the dimerization arm is not exposed.
The closed conformation is in equilibrium with
the extended conformation, in which the ligand
binding site is open, and the dimerization arm is
exposed. Both liganded and unliganded ErbB3 in
the extended conformation are assumed to undergo
homodimerization, leading to the formation of
bone fide homodimers. Besides these structures,
looser ErbB3 homodimers may also form. ErbB2
competes with the formation of these bona fide
ErbB3 homodimers, but it also facilitates the gener-
ation of ErbB3 homodimers (protein symbols sur-
rounded by a dashed ellipse). The structure of
ErbB2-induced ErbB3 homodimers is unclear.
) They can be bona fide ErbB3 homodimers or looser
molecular associations. Formation of ErbB3/ErbB2
heterodimers is mediated by the dimerization arm
of ErbB2 both in quiescent and HRG-stimulated
cells because they are completely absent from
PRT-pretreated samples. To see this figure in color,
go online.
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CONCLUSIONS

A model is proposed in which ErbB3 is assumed to be
present in several different states (Fig. 6). The inactive
form corresponds to the closed conformation of the extra-
cellular domain. The extracellular domain of ErbB3 un-
dergoes a conformational change to the active, extended
state. Constitutive homodimers can be formed from the
extended and closed state as well. These dimeric species
are indistinguishable from each other by TOCCSL. It has
already been suggested based on single particle tracking
that besides dimers corresponding to crystallographic
dimeric structures (10), looser, less stable dimers are
also present (17,38). The extended conformation of
ErbB3 not only binds the ligand, HRG, but it also readily
undergoes dimerization because of the exposure of the
dimerization arm. Although not explicitly considered,
mixed homodimers formed by a liganded and an unli-
ganded ErbB3 could also be present, as suggested for
ErbB1 previously (38). ErbB2 exerts a dual effect on
ErbB3 homodimerization: 1) it retards the diffusion
of ErbB3 homodimers and facilitates the formation of
ErbB3 homodimers. The conformational state of ErbB3
in these dimers is uncertain because they can be bona
fide homodimers or looser molecular associations. 2)
ErbB2 also competes with the formation of bona fide
ErbB3 homodimers stabilized by the dimerization arm.
This effect is brought about by the formation of ErbB3/
ErbB2 heterodimers stabilized by the dimerization arm
of ErbB2. Such heterodimers are present in quiescent
cells and in larger amounts in HRG-stimulated cells.
ErbB2 is also involved in reciprocal interactions with
the cytoskeleton because it induces the formation of
long actin stress fibers, and its retarded diffusion,
compared to ErbB3, is owed to intact actin filaments.
The presented results offer a valuable insight into the
workings of the ErbB3/ErbB2 receptor pair in a mini-
mally perturbed system.
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Supplementary Methods

Determination of ErbB3-ErbB3 homodimer fractions in CHO-ErbB3 cell line: Binding of
unlabeled ErbB3-Fab as well as binding of different amounts of AF488-ErbB3 Fab and AF647-
ErbB3 Fab to ErbB3 yields an underestimation of determined ErbB3 homodimer fractions. By
assuming the presence of plasma membrane structures containing either one or two ErbB3
molecule(s) and that all ErbB3 molecules are labeled by a Fab, the true number of
homodimers can be estimated by a simple mathematical correction of experimentally
determined apparent homodimer fractions. Observables in two-color TOCCSL experiments
are the number of ErbB3 signals in the red and green color channel, Sg and Sg, the amount of
visible ErbB3 homo-dimers corrected for false-positives, Scooc, and the fraction of unlabeled
(“white”) Fabs, p,,.

For simultaneous labeling of ErbB3 via Fabs carrying red and green dyes at the same time,

the overall probability p,, of a protein remaining unlabeled is estimated by

, (1)

S S
Wy =+ Wy —
SrR+Sg SR+S¢

Dy =
where w,. and w; is the fraction of unlabeled (“white”) protein in a sample labeled with
either red or green dyes only (see section Determination of the fraction of labeled Fabs
bound to ErbB3).

The probability of a protein being labeled red or green, respectively, is estimated by

pr = (1= py) —2_ and py = (1—py)—5- (2)

Sr+Sg Sr+Sg )
Let R, G and W denote a red, green and white label, respectively. All possible combinations

for labeling a dimer and their respective probabilities are given as follows:

Label RR RG RW GR GG GW WR 4 ww

Probability |  p? PrPg | PrPw | PgPr Pé | PgPw | PwPr | Pwbg | P&

In the two-color TOCCSL experiment only the labels RG and GR can be detected as co-
localized spots, the number of which is given by S.,;,c- All other dimer combinations are
missed. Dimers carrying the labels RR, RW and WR are detected as red monomers, dimers
labeled GG, GW or WG are detected as green monomers. WW dimers are not detected at all.
Let Dgr, Dre, Drw, Dcr, D, Dew, Dwr, Dwe and Dy denote the number of dimers in the
sample that are labeled RR, RG, RW, GR, GG, GW, WR, WG and WW, respectively. The

number of dimers in the sample is given by




— jaoloc . (3)
PrPg

The numbers of red and green monomers, Mg and Mg, can be calculated as
Mgp = Sgr = Scotoc = Drr — Drw — Dwr (4)
Mg =S¢ — Scotoc = Do — Dew — Dwe - (5)
Mg and Mg represent the numbers of red and green labeled monomers, respectively, which

can be written as

Mg =M -p, and Mgz =M-p, , (6)
where M is the total number of monomers in the sample. These equations are equivalent to
M="2R="6 (7)
Dr Dg

In a real experiment, however, the red and green monomers might not be present in exactly
this ratio. Therefore, the total number of monomers can be estimated by averaging the two

values:

M=1G@+ﬂ%. (8)
2\ pr Pg

Finally, the relative frequency of dimers, i.e. the ErbB3-ErbB3 homodimer fraction in CHO-

ErbB3 cells, is given by

D
Dfrac =5 (9)

M+D
Determination of ErbB3-ErbB3 homodimer fractions in CHO-ErbB2-ErbB3 cell line: The
labeling procedure was the same as for CHO-ErbB3 cells, i.e. ErbB3 was competitively
labeled with Fab fragments conjugated with either red or green dyes (AF647 and AF488).

Hence, the probability p}" of a protein remaining unlabeled is estimated in the same way as
for the case of CHO-ErbB3 cells (see equation (1)). The probability p7, p‘lgof an ErbB3 protein
being labeled red or green, respectively, is estimated from the numbers of red and green

signals, analogously to equation (2).

The amount of red and green signals SX and S¢, respectively, is given by

S§ = Mg + Dgg™ + Dré™ + Dy + DG™ + D™ + Dgiy (10)
Sf = MG™% + Dpg™ + Dgg™ + Dgg™ + Dg™ + D™ + Déiy (12)

where METPB3 | METDB3 s the number of ErbB3 monomers labeled red or green, respectively,
DRom, phom phom phom phom phom phom and DA™ are the numbers of ErbB3-ErbB3
homodimers carrying the labels denoted by the respective subscripts, and D{{ﬁ,t, Dg{f,,t are the

numbers of ErbB3-ErbB2 heterodimers carrying the respective labels.
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The number of colocalizations is given by
Slcoloc — D}izlgm + Dglgm — ZPIPthom , (12)
where D™ is the total number of ErbB3-ErbB3 homodimers in the sample. This number

can be obtained by rewriting equation (12) as
Sfoloc
—-—. 13
2p]py] (13)

The number of ErbB3 monomers ME™B3 and ErbB3-ErbB2 heterodimers D¢t cannot be

phom —

determined, because both are seen as just a red or just a green signal. We will obtain those
numbers later by combining the data from the ErbB3-ErbB3 homodimer experiment with the
data from the ErbB3-ErbB2 heterodimer experiment.
Determination of ErbB3-ErbB2 heterodimer fractions in CHO-ErbB2-ErbB3 cell line: For the
ErbB3-ErbB2 heterodimer experiment we labeled the ErbB2 protein with a Fab fragment
carrying a green dye (AF488) and the ErbB3 protein with a Fab fragment carrying a red dye
(AF647).
We denote with p; =7, and p; := 1, the probabilities of an ErbB3 protein being labeled
red and an ErbB2 protein being labeled green, where 7, and 4, denote the corrected degree
of labeling of ErbB3 and ErbB2, respectively (see section Determination of the fraction of
labeled Fabs bound to ErbB3). The probability of an ErbB3 protein and ErbB2 protein
remaining unlabeled (“white”) is given by p;'r = w, and p;]g = wgy, where w, and w,
denote the fraction of ErbB3 and ErbB2 proteins remaining without a dye (“white”).
The amount of red signals S¥ is given by

§7 = M™% + Dgg™ + Dy + Dy + Dié" + Diiy (14)
where D}%gt and D}%ﬁ} are the numbers of ErbB3-ErbB2 heterodimers, where the ErbB3
protein carries a red label and the ErbB2 protein carries either a green or no (“white”) label,
respectively.
The number of colocalizations is given by

Sgoloc — phet — pgngDhet, (15)

where D¢t js the total number of ErbB3-ErbB2 heterodimers in the sample.

The number of heterodimers ErbB3-ErbB2 in the sample can thus be estimated by

het _ S5
D =—g. (16)
pzpz



The number of ErbB3 monomers ME™B3 and ErbB3-ErbB3 homodimers D™ cannot be
determined, because both are seen just as red signals. We will obtain those numbers in the
following by combining the data from the ErbB3-ErbB2 heterodimer experiment with the
data from the ErbB3-ErbB3 homodimer experiment.
Combination of the ErbB3-ErbB3 homodimer and ErbB3-ErbB2 heterodimer experiments:
We assume that the proportions of ErbB3 monomers, ErbB3-ErbB3 homodimers and ErbB3-
ErbB2 heterodimers are the same in both experiments. Hence, it holds that
METbB3 yphom — pETbB3 /phom (17)
METbB3 /phet — pETbB3 /phet (18)
where the subscripts 1 and 2 indicate the numbers from the homodimer and heterodimer
experiments, respectively. From the experiments, we know the number of red signals SX,
SR, green signals S&, S§ and the number of colocalized spots S£°l°¢, §5°l¢ We want to
determine the amounts of monomers METPB3  \ETbBS  ErhB3-ErbB3 homodimers D™,
D™ and ErbB3-ErbB2 heterodimers D¢, D2¢t in both experiments.
From equations (13) and (16) we know that

hom __

Slcoloc
1

Szcoloc

and  Dhet = (19)

2p]p? pypd

Taking together equations (10) and (11) from the homodimer experiment we obtain
Sf +S{ — D™ (pipf + 2pipy + 4pipy +2p7pY +pipf) = MIPP3(p] + pf) +

D¢t (p] +py) . (20)

Rearranging equation (14) from the heterodimer experiment leads to
S§ — D3 (psps +p3p,”) = M™% + D™ (pgpy + 2p3py ") . (21)

Assuming that all the variables are nonzero, we can solve this system of equations (17)-(21)
to obtain the unknown variables ME7PB3, METPE3 phom phom phet 3nq phet,
Finally, the fractions of ErbB3 proteins present in monomers or bound either in homodimers

or heterodimers can be given as follows:

ErbB3
METPB3 _ M= (22)
fTCLC METbB3+2Dh0m+Dhet
hom ZDhom
D rac = METbB3 pphom phet (23)
het
het _ D
Dirgc = (24)

METbB3 L pphom phet’
where the fractions are the same inserting either results for ME™?83, phom phet from the
homodimer experiment (subscript 1) or heterodimer experiment (subscript 2).
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Determination of the fraction of labeled Fabs bound to ErbB3: Assuming a Poissonian
labeling distribution of the number of dyes per Fab fragment and that only Fabs with 1 or 2
dyes are able to bind to their target [(1)], the fractions of unlabeled, xo, and labeled, x4,e, Fab

fragments are given by

_ P(0,p0L)
X0 = 57 papon) (25)
Xaye = 1 — Xo. (26)

Here, DOL is the spectroscopically determined degree of labeling and equals the average
number of dyes per Fab fragment.

Let’s assume the following binding scheme

ko— kdye—
ErbB3Fab,__ErbB3—_—ErbB3Fab,, (27)
Ko+ kdye+

with ErbB3Fab, representing an unlabeled Fab bound to ErbB3, ErbB3 the protein without
any Fab, ErbB3Fabg,,. an dye-labeled Fab bound to ErbB3 and ko, ko+, kdaye- and kaye+ the

respective rates. The differential equations for this binding scheme can be written as

d[EZ’ZB” = ko_[ErbB3Fab] + kaye_|ErbB3Fabay,| — ko, [ErbB3]. [Faby] —
kaye+[ErbB3].[Faby.] (28)
AUEDBSPA%0) = ko [ErbB3]. [Faby] — ko_[ErbB3Fabq] (29)
d[ETbB3Fabgye
w = Kaye+ |[ETDB3]. [Fabaye| — kaye_|[ErbB3Fabgy,]. (30)

In equilibrium, it holds that

d[ErbB3] _ d[ErbB3Faby] _ d[ErbB3Fabgye]

0 . (31)
dt dt dt
Hence, in equilibrium it follows from (29) that
koy _ [ErbB3Faby] _ 1
ko— _ [ErbB3][Faby]  Kpo (32)

with Kpg being the equilibrium dissociation constant for an unlabeled Fab.

From (30) it follows that

Kaye+ [ErbB3Fabgye] 1
kaye— [ETbB3]-[Fabdye] Kpaye
with Kpaye being the equilibrium dissociation constant for a dye-conjugated Fab.
Dividing (32) by (33) yields
[ErbB3Faby] __ Kpdye [ErbB3].[Faby] __ Kpdye [Fabg] (34)
[ErbB3Fabgye]  Kpo |ETbB3l[Fabaye]  Kpo [Fabaye|



Hence, the ratio of bound labeled and unlabeled Fabs yields

[ErbB3Fabaye] _ Kpo [Fabayel _ Kpo Xdye
[ErbB3Fab] Kpdye [Fabo] Kpaye Xo

(35)

Finally, the fraction of ErbB3 being labeled by a Fab carrying one or two dyes yields

[ETbB3Fabgye) _ KpoXdye
[ErbB3Fabgye|+[ErbB3Faby] — KpoXdye+KpayeXo

=1. (36)

1 can be interpreted as the corrected degree of labeling of ErbB3 accounting for unlabeled
Fab fragments and was further used for correcting apparent dimer values. The same
calculation is valid for Fab fragments used for labeling ErbB2 in the heterodimer experiment.
In either case, 1, (n,) refers to the probability of labeling a protein with an Alexa647
(Alexa488) -conjugated Fab fragment (i.e. the apparent labeling efficiency). The fraction w of
proteins in a sample remaining without a dye (“white” proteins) is givenbyw =1 — 7.
Numbers for equilibrium constants, DOL and the probabilities can be found in Supplemental
Table 1.

Correction of ErbB3 homodimer fractions due to different diffusion constants: Assuming a
difference in mobility of ErbB3 monomers and dimers (diffusion coefficients D; and D,), the
apparent result of a TOCCSL experiment underestimates the fraction with lower mobility —in
our case the fraction of ErbB3 homodimers (see Table 1 for values of diffusion constants).
After the recovery phase, dimers with decreased mobility have a lower probability to be
detected in the analysis region compared to faster monomers. Based on known diffusion
coefficients, the results can be reevaluated and a corrected value for the homoassociation
can be determined.

The true dimer fraction, as presented in the results, is estimated by approximating the
recovery process in the two-color-TOCCSL experiment by means of an analytical calculation
for a slit aperture with an infinite extension in the y-direction. Consequently, variations
occur only along the x-axis.

Assuming an aperture with infinitely sharp edges at position +dx/2, an ideal photobleaching
process and free Brownian motion of the labeled molecules, the surface density profile along
the x-axis for a molecule species i with diffusion coefficient D; after the recovery time t. is

given by

_ 1 x+dx/2 1 x—dx/2
pi(x,t) = py; [1 > erf( N ) +3 erf( Jabi )] (37)



where erf denotes the Gaussian error function and pg; the initial surface density in the
shielded part of the membrane. The initial overall surface density pg (unit:
fluorophores/um?) including both color channels is composed of the initial monomer and
dimer surface densities pr; = Pomonomer + 2 * Po,aimer- The surface densities pomonomer and
Podimer (Unit: oligomers/um?) can easily be calculated from pg for a given stoichiometric
composition of monomers and dimers. Eq. 37 is then used to calculate the monomer and
dimer surface density profiles pmonomer(X trec) and Pgimer(X, trec) for the initial densities pomonomer
and pg qimer respectively, after a given recovery time t..

The apparent dimer fraction is determined as the ratio of the number of dimers Ngjner and

the total number of molecules Ny in the analysis region

Xcut
Fapp _ Ndimer _ fo cutoff Pdimer(X,t=trec) dx (38)
i = = X .
dimer Ntotal Jo cutess Ptotal(X,t=trec) dx

The analysis region is confined in x-direction by the limit +x.wf;, Where the surface density
exceeds a given cutoff surface density peyrorf = pchanne,,j(xcutoff, trec). The index j=1 or
2 denotes the color channel with the higher surface density, assuming non-equimolar
labeling conditions. Here, a value of peuotf = 1 signal/um?, representing the single molecule
detection limit, is used for the calculations. Thus, in order to determine Xcuwof, the surface
density profile in oligomers/um? in the channel with the higher surface density is calculated
as
Pehanne,j (X, ) = Pmonomer,j(6,t) + Paimer1,j(X,£) + Paimer12,;(x,t) (39)

With pPmonomer the monomer density, pgimer1,j the density of dimers present in only one
color channel (i.e. a dimer labeled with the same color), and pgimer12,j the density of dimers
visible in both color channels, pyonomer,;j (i-€. a dimer labeled with both colors).

Eqg. 39 leads to

Pehannetioz(6t) = Pmonomer (X t) Penannetiorz + Paimer (X t) [Phanneriors +
2 Pehannet1 * Pehannet 2] (40)
with pchannej representing the labeling probabilities for two spectrally distinct fluorescent
labels.
The apparent dimer fraction Fyp, = Fypp(firue) in an ideal two-color TOCCSL
experiment is thereby determined as a function of the true dimer fraction f;... (Supplemental

Figure 4A). The calculations show that the apparent dimer fraction approaches the real



dimer fraction as t..— (Supplemental Figure 4B). By evaluating the interpolated and
inverted calculated apparent dimer fraction Fa‘p}g at the value of the experimentally obtained
apparent dimer fraction Fexperiment, the true dimer fraction in the TOCCSL experiment f;ﬁ’;can

be obtained:

exp _ -1
true — app(Fexperiment)- (41)

For every TOCCSL experiment, Fgp,,(fyrue) Was calculated based on the experimentally

determined parameters D;, D, and po, and f.b was determined.



Supplemental figures and tables

p-Tyr p-ErbB3

untreated +HRG untreated +HRG

CHO-ErbB3

CHO-ErbB2-ErbB3

p-ErbB3 (anti-p-ErbB3+AF647-GAMIG)

Supplemental Figure 1. Measurement of constitutive and HRG-induced tyrosine
phosphorylation in the cell lines used for two-color TOCCSL experiments

CHO and CHO-ErbB2 cells were transiently transfected with ErbB3 generating the CHO-ErbB3
and CHO-ErbB2-ErbB3 cell lines, respectively. Cells were serum-starved overnight followed
by treatment with 25 nM heregulin (HRG) at 37°C. Control and stimulated cells were fixed,
permeabilized and labeled with primary monoclonal antibodies against phospho-tyrosine (p-
Tyr) or ErbB3 phosphorylated at Tyr1289 (p-ErbB3) followed by staining with AF647-
conjugated secondary antibodies (GAMIG — goat anti-mouse, red channel of images). The
green channel corresponds to the signal of the AF488-anti-ErbB3 Fab. Images of both color

channels were recorded separately using a confocal microscope and overlaid for display.
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Cell line: CHO-ErbB3, Protein: ErbB3
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Supplemental Figure 2. Brightness analysis of ErbB2 and ErbB3 detected in an individual
color channel shows no indication of larger clusters.
The brightness distribution of single fluorescence spots in CHO-ErbB3 and CHO-ErbB2-ErbB3

cells after HRG stimulation is plotted as a probability density function (left). Data (black line)
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were fitted as described in ref. (2) (red line) with the single-molecule brightness reference
taken from the last tracking image. The fits yielded an overwhelming majority of monomeric
species for all experimental conditions. The percent values of monomeric, dimeric, trimeric
and tetrameric species, determined from these fits, are shown as blue squares in the plots
on the right. Subsets of all data were randomly selected 100-times, fitted and the plotted
values represent the means and standard errors of these fittings. For comparison, the
number of dyes per Fab considering a Poissonian distribution was calculated with the “true
degree of labeling” (see Supplemental Table 1, black circles in the plot on the right). These
results exclude the presence of a significant fraction of higher-order oligomeric ErbB3

species in the TOCCSL images.
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Supplemental Figure 3. Distribution of step lengths in single particle tracking

Single particle tracking of fluorescent Fab-labeled cells was carried out, and the distribution
of step lengths under different experimental conditions is shown as normalized histograms.
A. Step length distribution of ErbB2 and ErbB3 in untreated CHO-ErbB2-ErbB3 cells
generated from data displayed in Table 1 of the manuscript.

B-C. In a different experiment control CHO-ErbB2-ErbB3 cells (B) and those treated with

latrunculin B (C) were analyzed.
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Supplemental Figure 4. Alterations of apparent ErbB3 homodimer fractions due to
different diffusion constants of monomeric and dimeric species

A. TOCCSL experiments were simulated assuming different real dimer fractions according to
equations 37-41. The apparent dimer fractions were calculated according to equation 38
considering different diffusion constants for monomers and dimers. The following
parameters were used for the calculations shown: aperture size 10 um; diffusion constants
for monomers and dimers D; = 0.1 pm?/s and D, = 0.05 um?/s, respectively; density of ErbB3
molecules po = 100 molecules/pum?; recovery time in the TOCCSL experiment tyec = 5s.

B. Change in the apparent dimer fraction as a function of recovery time. A TOCCSL
experiment was simulated assuming a 70% real dimer fraction and diffusion constants D; =
0.05 um?/s and D, = 0.02 um?/s for moners and dimers, respectively. The apparent dimer

fraction, calculated as in part A, approaches the real dimer fraction for t—oo.
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Supplemental Table 1. Characterization of probes used for fluorescent labeling

Kpo Kpass Kpsaz
Probe DOL
(ug/ml) (ug/mi) (ug/m) ™ e
AF488-ErbB3-Fab 1.4 4 10 - - 0.488
AF647-ErbB3-Fab 1.8 4 - 19 0.419 -
AF488-ErbB2-Fab 1.4 4.6 4.6 - - 0.704

The degree of labeling (DOL) was characterized by absorption spectroscopy. The dissociation
constants of unlabeled Fab (Kpo), AF488-labeled Fab (Kpsss) and AF647-labeled Fab (Kpss7)
were determined by fitting of concentration dependent, equilibrium binding data, obtained
by flow cytometry, as described in Experimental procedures. The probability that an ErbB2
protein is labeled by a red, AF647-tagged Fab (n,) and the probability that ErbB3 is labeled by

a green, AF488-conjugated Fab (ng) were calculated as described in Supplementary Methods.
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Supplemental Table 2. Percentages of homo- and heterodimers under different experimental conditions

Correction for Correction for . .
Raw data . e . Joint analysis
labeling diffusion
HRG PRT ErbB3 ErbB3/2 ErbB3 ErbB3/2 ErbB3 ErbB3/2 ErbB3 ErbB3/2
homo hetero homo hetero homo hetero homo hetero
~ ~ 1.1% 3% 13.2%
CHO +0.5 +1.3% +4.8%
ErbB3 - ks
r
3.7% 13% 69.5%
cells + -
+0.5 +2.6% +3.9%
+ +
~ ~ 1.6% 2.4% 3.5% 4.4% 54% 70.8% 22% 34%
+1% +0.4% 2% +0.6% +9% +1.6% +6% 7%
CHO- _ N 3.6% 0.4% 8.7% 0.6% 15% 0.8% 14% 1%
ErbB2- +0.5% +0.1% +1.3% +0.1% 2% +0.1% +1% +1%
ErbB3 N _ 6.8% 4.4% 16.2% 8.1% 77.8% 88.4% 45% 43%
cells +1.5% +0.5% +4% +0.9% +3.5% +0.6% +5% +11%
N N 5.1% 1.5% 13.2% 2.9% 36% 14.5% 27% 3%
+0.3% +0.1% +2.2% +0.2% +3.9% +1% 2% +1%

Dimeric events were determined from colocalizations in two-color TOCCSL experiments, and these numbers were normalized to the total
number of ErbB3 signals detected under the given experimental condition (“raw data”). These percentages were corrected for unlabeled ErbB2
or ErbB3 (i.e. ErbB3/2 bound to an Fab without a fluorophore), for the lower binding affinity of labeled Fabs compared to unlabeled ones and
for different fractions of the two antibodies applied in all ErbB3 homo-association experiments (“correction for labeling”), followed by taking
the slower diffusion of dimers into consideration (“correction for diffusion”). The results of homo- and heterodimerization experiments in CHO-
ErbB2-ErbB3 cells were pooled to obtain the percentages of homo- and heterodimers as a function of ErbB3 (“joint analysis”). The numbers
shown represent the mean+SEM.
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Supplemental Table 3. Statistical analysis of the differences between dimer fractions

Lo CHO-ErbB3 CHO-ErbB2-ErbB3
ErbB3 homoassociation
(all dimers) no HRG + HRG no HRG + HRG no HRG
no PRT no PRT + PRT
no HRG
0.001
CHO-ErbB3
+ HRG effect of HRG in the
absence of ErbB2
0.001 0.627
no HRG | no PRT | effect of ErbB2 co- | effect of ErbB2 co-expression
expression on the HRG effect
+HRG | no PRT 0.001 0.995 effegt'ngRG
CHO-ErbB2-
ErbB3 0.002 '
no HRG | + PRT 1.000 0.001 effect of PRT without 0.001
HRG stimulation
0.001
+ HRG + PRT 0.11 0.003 0.395 effect of PRT on 0.187
HRG stimulation
L. CHO-ErbB2-3
ErbB3 heter'oassoaatlon o HRG T HRG O HRG
(all dimers)
no PRT no PRT + PRT
no HRG | no PRT
+HRG | no PRT 0.769
effect of HRG
CHO-ErbB2- 0.014
ErbB3 no HRG | + PRT effect of PRT without 0.004
HRG stimulation
0.004
+ HRG + PRT 0.021 effect of PRT on 0.997
HRG stimulation

The p values in the body of the table, characterizing the statistical significance of the differences in dimer percentages shown in Fig. 2, were

determined with Tukey’s HSD test in order to control the familywise error rate.
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Supplemental Table 4. Statistical analysis of the diffusion coefficients of dimers

ErbB3/ErbB3,
constitutive,
no ErbB2
D=0.052 pm?*/s

ErbB3/ErbB3,
constitutive,
with ErbB2
D=0.031 pm?*/s

ErbB3/ErbB3,
HRG-induced,
no ErbB2
D=0.014 pm?*/s

ErbB3/ErbB3,
HRG-induced,
with ErbB2
D=0.018 pm?*/s

ErbB3/ErbB2,
constitutive
D=0.017 pm?*/s

ErbB3/ErbB2,
HRG-induced
D=0.01 umz/sec

ErbB3/ErbB3,
constitutive, no ErbB2
D=0.052 pm?/s

0.0003

0.0003

0.0003

0.0003

0.0003

ErbB3/ErbB3,
constitutive, with ErbB2
D=0.031 pm?%/s

0.0003

0.0005

0.002

0.0007

ErbB3/ErbB3,
HRG-induced, no ErbB2
D=0.014 pm?*/s

0.65

0.95

0.96

ErbB3/ErbB3,
HRG-induced, with ErbB2
D=0.018 pm?*/s

0.99

0.46

ErbB3/ErbB2,
constitutive
D=0.017 pm?%/s

0.71

ErbB3/ErbB2,
HRG-induced
D=0.01 pm?/s

The p values in the body of the table, characterizing the statistical significance of the differences in the diffusion coefficients of dimers shown in

Table 1, were determined with Tukey’s HSD test in order to control the familywise error rate. Cells corresponding to statistically significant

differences are shaded.
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