173 research outputs found
IBD sharing patterns as intra-breed admixture indicators in small ruminants
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breedâs level of admixture from: (i) the proportion of the genome shared by breedâs members (i.e. âgenetic integrity levelâ assessed from ADMIXTURE software analyses), and (ii) the âAV indexâ (calculated from Reynoldsâ genetic distances), used as a proxy for the âgenetic distinctivenessâ. In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.</p
The genome sequence of the wisent (Bison bonasus)
This work was supported by the Youth Science and Technology Innovation Team of Sichuan Province (2014TD003), Shenzhen Industrial Designation Services Cloud Platform (GGJS20150429172906635), International Collaboration 111 Projects of China, Fundamental Research Funds for the Central Universities, 985 and 211 Projects of Sichuan University.The wisent, also known as the European bison, was rescued from extinction approximately 80 years ago through the conservation of 12 individuals. Here, we present the draft genome sequence of a male wisent individual descended from this founding stock. A total of 366 billion base pairs (Gb) of raw reads from whole-genome sequencing of this wisent were generated using the Illumina HiSeq2000 platform. The final genome assembly (2.58 Gb) is composed of 29,074 scaffolds with an N50 of 4.7 Mb. 47.3% of the genome is composed of repetitive elements. We identified 21,542 genes and 58,385 non-coding RNAs. A phylogenetic tree based on nuclear genomes indicated sister relationships between bison and wisent and between the wisent-bison clade and yak. For 75 genes we obtained evidence of positive evolution in the wisent lineage. We provide the first genome sequence and gene annotation for the wisent. The availability of these resources will be of value for the future conservation of this endangered large mammal and for reconstructing the evolutionary history of the Bovini tribe.Publisher PDFPeer reviewe
Geographic distribution of haplotype diversity at the bovine casein locus
The genetic diversity of the casein locus in cattle was studied on the basis of haplotype analysis. Consideration of recently described genetic variants of the casein genes which to date have not been the subject of diversity studies, allowed the identification of new haplotypes. Genotyping of 30 cattle breeds from four continents revealed a geographically associated distribution of haplotypes, mainly defined by frequencies of alleles at CSN1S1 and CSN3. The genetic diversity within taurine breeds in Europe was found to decrease significantly from the south to the north and from the east to the west. Such geographic patterns of cattle genetic variation at the casein locus may be a result of the domestication process of modern cattle as well as geographically differentiated natural or artificial selection. The comparison of African Bos taurus and Bos indicus breeds allowed the identification of several Bos indicus specific haplotypes (CSN1S1*C-CSN2*A2-CSN3*AI/CSN3*H) that are not found in pure taurine breeds. The occurrence of such haplotypes in southern European breeds also suggests that an introgression of indicine genes into taurine breeds could have contributed to the distribution of the genetic variation observed
Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data
INTRODUCTION: The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. METHODS: In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. RESULTS AND DISCUSSION: We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian F ST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism ( BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation ( SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity
Dual origins of dairy cattle farming - evidence from a comprehensive survey of European Y-chromosomal variation
BACKGROUND: Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages. METHODOLOGY AND PRINCIPAL FINDINGS: Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula. CONCLUSIONS: We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries.Penedo,
Lenstra mail
Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle
Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle from the same location. These findings indicate strong maternal founder effects followed by limited maternal gene flow when new territories are colonized. However, effects of adaptation to new environments may also play a role.Facultad de Ciencias VeterinariasInstituto de GenĂŠtica Veterinari
Characterization of 37 Breed-Specific Single-Nucleotide Polymorphisms in Sheep
We identified 37 single-nucleotide polymorphisms (SNPs) in sheep and screened 16 individuals from 8 different sheep breeds selected throughout Europe. Population genetic measures based on the genotyping of about 30 sheep from the same 8 breeds are reported. To date, there are no sheep SNPs documented in the National Center for Biotechnology Information dbSNP database. Therefore, the markers presented here contribute significantly to those currently availabl
- âŚ