10 research outputs found

    Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models

    Get PDF
    Abstract In neurodegenerative disorders, such as Alzheimer's disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patchclamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia

    The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease

    No full text
    The synaptic connections that form between neurons during development remain plastic and able to adapt throughout the lifespan, enabling learning and memory. However, during aging and in particular in neurodegenerative diseases, synapses become dysfunctional and degenerate, contributing to dementia. In the case of Alzheimer’s disease (AD), synapse loss is the strongest pathological correlate of cognitive decline, indicating that synaptic degeneration plays a central role in dementia. Over the past decade, strong evidence has emerged that oligomeric forms of amyloid beta, the protein that accumulates in senile plaques in the AD brain, contribute to degeneration of synaptic structure and function. More recent data indicate that pathological forms of tau protein, which accumulate in neurofibrillary tangles in the AD brain, also cause synaptic dysfunction and loss. In this review, we will present the case that soluble forms of both amyloid beta and tau protein act at the synapse to cause neural network dysfunction, and further that these two pathological proteins may act in concert to cause synaptic pathology. These data may have wide-ranging implications for the targeting of soluble pathological proteins in neurodegenerative diseases to prevent or reverse cognitive decline

    Synaptic distributions of pS214‐tau in rhesus monkey prefrontal cortex are associated with spine density, but not with cognitive decline

    No full text
    Female rhesus monkeys and women are subject to age- and menopause-related deficits in working memory, an executive function mediated by the dorsolateral prefrontal cortex (dlPFC). Long-term cyclic administration of 17β-estradiol improves working memory, and restores highly plastic axospinous synapses within layer III dlPFC of aged ovariectomized monkeys. In this study, we tested the hypothesis that synaptic distributions of tau protein phosphorylated at serine 214 (pS214-tau) are altered with age or estradiol treatment, and couple to working memory performance. First, ovariectormized young and aged monkeys received vehicle or estradiol treatment, and were tested on the delayed response (DR) test of working memory. Serial section electron microscopic immunocytochemistry was then performed to quantitatively assess the subcellular synaptic distributions of pS214-tau. Overall, the majority of synapses contained pS214-tau immunogold particles, which were predominantly localized to the cytoplasm of axon terminals. pS214-tau was also abundant within synaptic and cytoplasmic domains of dendritic spines. The density of pS214-tau immunogold within the active zone, cytoplasmic, and plasmalemmal domains of axon terminals, and subjacent to the postsynaptic density within the subsynaptic domains of dendritic spines, were each reduced with age. None of the variables examined were directly linked to cognitive status, but a high density of pS214-tau immunogold particles within presynaptic cytoplasmic and plasmalemmal domains, and within postsynaptic subsynaptic and plasmalemmal domains, accompanied high synapse density. Together, these data support a possible physiological, rather than pathological, role for pS214-tau in the modulation of synaptic morphology in monkey dlPFC

    Diverse Synaptic Distributions of G Protein-coupled Estrogen Receptor 1 in Monkey Prefrontal Cortex with Aging and Menopause

    No full text
    Age- and menopause-related impairment in working memory mediated by the dorsolateral prefrontal cortex (dlPFC) occurs in humans and nonhuman primates. Long-term cyclic 17β-estradiol treatment rescues cognitive deficits in aged ovariectomized rhesus monkeys while restoring highly plastic synapses. Here we tested whether distributions of G protein-coupled estrogen receptor 1 (GPER1) within monkey layer III dlPFC synapses are sensitive to age and estradiol, and coupled to cognitive function. Ovariectomized young and aged monkeys administered vehicle or estradiol were first tested on a delayed response test of working memory. Then, quantitative serial section immunoelectron microscopy was used to determine the distributions of synaptic GPER1. GPER1-containing nonperforated axospinous synapse density was reduced with age, and partially restored with estrogen treatment. The majority of synapses expressed GPER1, which was predominately localized to presynaptic cytoplasm and mitochondria. GPER1 was also abundant at plasmalemmas, and within cytoplasmic and postsynaptic density (PSD) domains of dendritic spines. GPER1 levels did not differ with age or treatment, and none of the variables examined were tightly associated with cognitive function. However, greater representation of GPER1 subjacent to the PSD accompanied higher synapse density. These data suggest that GPER1 is positioned to support diverse functions key to synaptic plasticity in monkey dlPFC

    The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease

    No full text
    The synaptic connections that form between neurons during development remain plastic and able to adapt throughout the lifespan, enabling learning and memory. However, during aging and in particular in neurodegenerative diseases, synapses become dysfunctional and degenerate, contributing to dementia. In the case of Alzheimer’s disease (AD), synapse loss is the strongest pathological correlate of cognitive decline, indicating that synaptic degeneration plays a central role in dementia. Over the past decade, strong evidence has emerged that oligomeric forms of amyloid beta, the protein that accumulates in senile plaques in the AD brain, contribute to degeneration of synaptic structure and function. More recent data indicate that pathological forms of tau protein, which accumulate in neurofibrillary tangles in the AD brain, also cause synaptic dysfunction and loss. In this review, we will present the case that soluble forms of both amyloid beta and tau protein act at the synapse to cause neural network dysfunction, and further that these two pathological proteins may act in concert to cause synaptic pathology. These data may have wide-ranging implications for the targeting of soluble pathological proteins in neurodegenerative diseases to prevent or reverse cognitive decline
    corecore