31 research outputs found

    Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males

    Get PDF
    The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; P < 0.001). Incorporation of dietary protein-derived L-[1-13C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; P = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-13C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; P = 0.815) and L-[ring-2H5]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; P = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery

    Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans

    Get PDF
    Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans

    Sucrose but Not Nitrate Ingestion Reduces Strenuous Cycling-induced Intestinal Injury

    Get PDF
    Purpose Strenuous exercise induces intestinal injury, which is likely related to splanchnic hypoperfusion and may be associated with gastrointestinal complaints commonly reported during certain exercise modalities. Increasing circulating nitric oxide (NO) levels or inducing postprandial hyperemia may improve splanchnic perfusion, thereby attenuating intestinal injury during exercise. Therefore, we investigated the effects of both dietary nitrate ingestion and sucrose ingestion on splanchnic perfusion and intestinal injury induced by prolonged strenuous cycling. Methods In a randomized crossover manner, 16 well-trained male athletes (age, 28 7 yr; W-max, 5.0 0.3 Wkg(-1)) cycled 60 min at 70% W-max after acute ingestion of sodium nitrate (NIT; 800 mg NO3), sucrose (SUC; 40 g), or a water placebo (PLA). Splanchnic perfusion was assessed by determining the gap between gastric and arterial pCO(2) (gap(g-a)pCO(2)) using gastric air tonometry. Plasma intestinal fatty acid-binding protein (I-FABP) concentrations, reflecting enterocyte damage, were assessed every 20 min during and up to 60 min of postexercise recovery. Results The exercise protocol resulted in splanchnic hypoperfusion, as gap(g-a)pCO(2) levels increased during exercise (P <0.001), with no differences between treatments (P = 0.47). Although plasma I-FABP concentrations increased during exercise and postexercise recovery for all treatments (P <0.0001), the increase was different between treatments (P <0.0001). Post hoc comparisons showed an attenuated increase in I-FABP in SUC versus PLA (P = 0.020). In accordance, I-FABP area under the curve (AUC(0-120)) was significantly lower in SUC versus PLA (57,270 +/- 77,425 vs 114,907 +/- 91,527 pgmL(-1) per 120 min, P = 0.002). No differences were observed between NIT and PLA (P = 0.99). Conclusion Sucrose but not nitrate ingestion lowers intestinal injury evoked during prolonged strenuous cycling. These results suggest that sucrose ingestion, but not nitrate, prevents hypoperfusion-induced gastrointestinal damage during exercise and, as such, may help to lower exercise-related gastrointestinal complaints

    Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training

    No full text
    Aim Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Methods Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Results Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P < 0.01). Myonuclear content increased significantly over time in both the type I (P < 0.01) and type II (P < 0.001) muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P < 0.001). Conclusion Increases in myonuclear domain size do not appear to drive myonuclear accretion and muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans

    Dietary Protein and Physical Activity Interventions to Support Muscle Maintenance in End-Stage Renal Disease Patients on Hemodialysis

    Get PDF
    End-stage renal disease patients have insufficient renal clearance capacity left to adequately excrete metabolic waste products. Hemodialysis (HD) is often employed to partially replace renal clearance in these patients. However, skeletal muscle mass and strength start to decline at an accelerated rate after initiation of chronic HD therapy. An essential anabolic stimulus to allow muscle maintenance is dietary protein ingestion. Chronic HD patients generally fail to achieve recommended protein intake levels, in particular on dialysis days. Besides a low protein intake on dialysis days, the protein equivalent of a meal is extracted from the circulation during HD. Apart from protein ingestion, physical activity is essential to allow muscle maintenance. Unfortunately, most chronic HD patients have a sedentary lifestyle. Yet, physical activity and nutritional interventions to support muscle maintenance are generally not implemented in routine patient care. To support muscle maintenance in chronic HD patients, quantity and timing of protein intake should be optimized, in particular throughout dialysis days. Furthermore, implementing physical activity either during or between HD sessions may improve the muscle protein synthetic response to protein ingestion. A well-orchestrated combination of physical activity and nutritional interventions will be instrumental to preserve muscle mass in chronic HD patients

    Daily resistance-type exercise stimulates muscle protein synthesis in vivo in young men

    Get PDF
    Resistance-type exercise increases muscle protein synthesis rates during acute postexercise recovery. The impact of resistance-type exercise training on (local) muscle protein synthesis rates under free-living conditions on a day-to-day basis remains unclear. We determined the impact of daily unilateral resistance-type exercise on local myofibrillar protein synthesis rates during a 3-day period. Twelve healthy young men (22 1 yr) were recruited to participate in this study where they performed daily, unilateral resistance-type exercise during a 3-day intervention period. Two days before the exercise training subjects ingested 400 ml deuterated water (2 H2O). Additional 50-ml doses of deuterated water were ingested daily during the training period. Saliva and blood samples were collected daily to assess body water and amino acid precursor deuterium enrichments, respectively. Muscle tissue biopsies were collected before and after the 3 days of unilateral resistance-type exercise training from both the exercised and the nonexercised, control leg for the assessment of muscle protein synthesis rates. Deuterated water dosing resulted in a steady-state body water enrichment of 0.70 0.03%. Intramuscular free [2 H]alanine enrichment increased up to 1.84 0.06 mole percent excess (MPE) before the exercise training and did not change in both the exercised and control leg during the 3 subsequent exercise training days (2.11 0.11 and 2.19 0.12 MPE, respectively; P 0.05). Muscle protein synthesis rates averaged 1.984 0.118 and 1.642 0.089%/day in the exercised vs. nonexercised, control leg when assessed over the entire 3-day period (P 0.05). Daily resistance-type exercise stimulates (local) muscle protein synthesis in vivo in humans

    Blood Flow Restriction Only Increases Myofibrillar Protein Synthesis with Exercise

    Get PDF
    Purpose: Combining blood flow restriction (BFR) with exercise can stimulate skeletal muscle hypertrophy. Recent observations in an animal model suggest that BFR performed without exercise can also induce anabolic effects.We assessed the effect of BFR performed both with and without low-load resistance-type exercise (LLRE) on in vivo myofibrillar protein synthesis rates in young men. Methods: Twenty healthy young men (age = 24 ± 1 yr, body mass index = 22.9 ± 0.6 kg·m−2) were randomly assigned to remain in resting condition (REST ± BFR; n = 10) or to perform LLRE (LLRE ± BFR at 20% one-repetition maximum; n = 10), combined with two 5-min cycles of single leg BFR. Myofibrillar protein synthesis rates were assessed during a 5-h post-BFR period by combining a primed continuous L-[ring-13C6]phenylalanine infusion with the collection of blood samples, and muscle biopsies from the BFR leg and the contralateral control leg. The phosphorylation status of anabolic signaling (mammalian target of rapamycin pathway) and metabolic stress (acetyl-CoA carboxylase)–related proteins, as well as the mRNA expression of genes associated with skeletal muscle mass regulation, was assessed in the collected muscle samples. Results: Under resting conditions, no differences in anabolic signaling or myofibrillar protein synthesis rates were observed between REST + BFR and REST (0.044% ± 0.004% vs 0.043% ± 0.004% per hour, respectively; P = 0.683). By contrast, LLRE + BFR increased myofibrillar protein synthesis rates by 10% ± 5% compared with LLRE (0.048% ± 0.005% vs 0.043% ± 0.004% per hour, respectively; P = 0.042). Furthermore, compared with LLRE, LLRE + BFR showed higher phosphorylation status of acetyl-CoA carboxylase and 4E-BP1 as well as the elevated mRNA expression of MuRF1 (all P < 0.05). Conclusion: BFR does not increase myofibrillar protein synthesis rates in healthy young men under resting conditions. When combined with LLRE, BFR increases postexercise myofibrillar protein synthesis rates in vivo in humans

    End-Stage Renal Disease Patients Lose a Substantial Amount of Amino Acids during Hemodialysis

    Get PDF
    Background Poor nutritional status is frequently observed in end-stage renal disease patients and associated with adverse clinical outcomes and increased mortality. Loss of amino acids (AAs) during hemodialysis (HD) may contribute to protein malnutrition in these patients. Objective We aimed to assess the extent of AA loss during HD in end-stage renal disease patients consuming their habitual diet. Methods Ten anuric chronic HD patients (mean ± SD age: 67.9 ± 19.3 y, BMI: 23.2 ± 3.5 kg/m2), undergoing HD 3 times per week, were selected to participate in this study. Spent dialysate was collected continuously and plasma samples were obtained directly before and after a single HD session in each participant. AA profiles in spent dialysate and in pre-HD and post-HD plasma were measured through ultra-performance liquid chromatography to determine AA concentrations and, as such, net loss of AAs. In addition, dietary intake before and throughout HD was assessed using a 24-h food recall questionnaire during HD. Paired-sample t tests were conducted to compare pre-HD and post-HD plasma AA concentrations. Results During an HD session, 11.95 ± 0.69 g AAs were lost via the dialysate, of which 8.26 ± 0.46 g were nonessential AAs, 3.69 ± 0.31 g were essential AAs, and 1.64 ± 0.17 g were branched-chain AAs. As a consequence, plasma total and essential AA concentrations declined significantly from 2.88 ± 0.15 and 0.80 ± 0.05 mmol/L to 2.27 ± 0.11 and 0.66 ± 0.05 mmol/L, respectively (P < 0.05). AA profiles of pre-HD plasma and spent dialysate were similar. Moreover, AA concentrations in pre-HD plasma and spent dialysate were strongly correlated (Spearman's ρ = 0.92, P < 0.001). Conclusions During a single HD session, ∼12 g AAs are lost into the dialysate, causing a significant decline in plasma AA concentrations. AA loss during HD can contribute substantially to protein malnutrition in end-stage renal disease patients. This study was registered at the Netherlands Trial Registry (NTR7101)
    corecore