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Abstract: End-stage renal disease patients have insufficient renal clearance capacity left to adequately
excrete metabolic waste products. Hemodialysis (HD) is often employed to partially replace renal
clearance in these patients. However, skeletal muscle mass and strength start to decline at an accelerated
rate after initiation of chronic HD therapy. An essential anabolic stimulus to allow muscle maintenance
is dietary protein ingestion. Chronic HD patients generally fail to achieve recommended protein
intake levels, in particular on dialysis days. Besides a low protein intake on dialysis days, the protein
equivalent of a meal is extracted from the circulation during HD. Apart from protein ingestion, physical
activity is essential to allow muscle maintenance. Unfortunately, most chronic HD patients have
a sedentary lifestyle. Yet, physical activity and nutritional interventions to support muscle maintenance
are generally not implemented in routine patient care. To support muscle maintenance in chronic
HD patients, quantity and timing of protein intake should be optimized, in particular throughout
dialysis days. Furthermore, implementing physical activity either during or between HD sessions may
improve the muscle protein synthetic response to protein ingestion. A well-orchestrated combination of
physical activity and nutritional interventions will be instrumental to preserve muscle mass in chronic
HD patients.
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1. Introduction

Chronic kidney disease (CKD) is currently a public health problem with a global prevalence of 10%
and the cause of approximately 33 million disability-adjusted life-years worldwide [1,2]. Development
and progression of CKD are associated with the age-related decline in renal function, especially
in individuals with hypertension and diabetes mellitus [3–5]. Therefore, the rapid ageing of our
population is expected to further increase prevalence of CKD and its progression to end-stage renal
disease (ESRD) [6,7]. The glomerular filtration rate in ESRD patients is below 15 mL/min/1.73 m2 and
insufficient to adequately remove metabolic waste products and fluids from the body [8,9]. Due to the
accumulation of metabolic waste products in their body, ESRD patients experience phenotypic changes
that resemble the ageing process, with a progressive loss of skeletal muscle mass and strength [10].
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To prevent lethal consequences of metabolic waste product accumulation in ESRD patients,
hemodialysis (HD) can be used to partially replace renal solute removal [11]. Over the past decades,
survival of patients undergoing HD has improved substantially [12,13]. However, prevention of the
adverse effects of HD on body composition has made less progression. After initiation of chronic
hemodialysis (CHD) therapy, the age-related loss of skeletal muscle mass and strength accelerates and
patients typically develop impairments in physical function [14–17]. Protein-energy wasting, a severe
state of malnutrition, is observed in 28%–54% of CHD patients [18,19]. Loss of skeletal muscle mass
and strength predisposes CHD patients to frailty and substantially reduces their quality of life [20].
Furthermore, the decline in skeletal muscle mass and strength is associated with higher hospitalization
and mortality rates in CHD patients [20–22]. As the duration of CHD treatment is associated with its
detrimental effects on body composition, the improved survival rate of CHD patients will generate
new challenges for healthcare [14]. This emphasizes the need to understand and counteract skeletal
muscle mass and strength loss in CHD patients.

2. Muscle Maintenance

Skeletal muscle mass is regulated through a dynamic balance between continuous synthesis and
breakdown of muscle proteins. The muscle protein pool has shown to possess a turnover rate of 1%–2%
per day, allowing skeletal muscle tissue to adapt to circumstances such as changes in physical activity
pattern (e.g., muscle hypertrophy following resistance-type exercise training) [23]. Ingesting several
protein-containing meals throughout the day results in a sinusoidal pattern of subsequent increases
and decreases in skeletal muscle protein synthesis and breakdown rates [24]. Skeletal muscle protein
synthesis rates are high during post-prandial periods and low during post-absorptive periods, whilst
skeletal muscle protein breakdown rates follow a reverse pattern. Muscle maintenance is achieved
when skeletal muscle protein synthesis rates equal skeletal muscle protein breakdown rates over
a given period.

Protein ingestion is an essential requirement to maintain skeletal muscle mass. After consumption,
dietary protein is absorbed as amino acids in the intestine, with a large fraction being subsequently
released into the circulation [25]. The release of amino acids into the circulation following protein
ingestion elevates plasma amino acid concentrations for a post-prandial period of up to 5 h [26].
These circulating plasma amino acids serve as precursors for de novo synthesis of muscle protein [27].
However, amino acids are more than simply building blocks for muscle protein synthesis, as they
can function as signaling molecules. The post-prandial increase in plasma essential amino acid
concentrations, and leucine in particular, stimulates anabolic signaling through several molecular
pathways, such as the mammalian target of rapamycin complex 1 (mTORC1) pathway [28,29].
This post-prandial anabolic signaling increases skeletal muscle protein synthesis rates and inhibits
proteolysis, allowing net muscle protein accretion [27].

Muscle loss can be attributed both to an increase in muscle protein breakdown as well as to
a decline in muscle protein synthesis rates. Previous work has reported increased muscle proteolysis
in CHD patients due to inflammation, metabolic acidosis, and the dialysis procedure itself [30–33].
Furthermore, it has been suggested that the muscle protein synthetic response to feeding is impaired in
patients with CKD [34]. Whereas a maximal post-prandial muscle protein synthetic response has been
reported after ingesting up to 20 g of a high-quality protein in healthy young adults, a lesser response
has been observed in older individuals [27,35,36]. More recently, van Vliet et al. were unable to detect
a measurable increase in skeletal muscle protein synthesis rates in CHD patients following ingestion
of a meal containing 20 g protein [37]. The latter suggests that CHD patients suffer from a blunted
muscle protein synthetic response to feeding, a phenomenon that has been coined anabolic resistance.
In healthy elderly individuals, it has been shown that the anabolic resistance of skeletal muscle
tissue can be overcome through ingesting a greater amount of protein (at least 30 g of a high-quality
protein) [38] and/or performing a bout of resistance-type exercise prior to feeding [39]. When tailored
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specific to CHD patients, these anabolic strategies may prove essential to attenuate or even prevent the
accelerated loss of skeletal muscle mass and strength in ESRD patients undergoing HD.

3. Dietary Protein Intake in ESRD Patients on HD

For healthy young adults, the recommended dietary protein intake to achieve a net balance between
muscle protein synthesis and breakdown rates has been set at 0.8 g protein/kg body weight/day by the
World Health Organization [40,41]. This level of protein intake may not be sufficient to support muscle
maintenance in CHD patients. According to the National Kidney Foundation K/DOQI Clinical Practice
Guidelines, these patients are recommended to ingest >1.2 g protein/kg body weight/day [42–45].
However, CHD patients generally do not meet this recommended level of protein intake. Previous
studies in this population have observed a dietary protein intake of 0.9–1.0 g protein/kg body
weight/day [46–51]. Especially on dialysis days, factors such as time constraints and reduced appetite
make it difficult for patients to consume ample dietary protein [52]. As a result, dietary protein intake
in CHD patients has been reported to be ~0.8 g protein/kg body weight on dialysis days compared to
~1.0 g protein/kg body weight on non-dialysis days [50].

In addition to low protein intake, another factor compromises plasma amino acid availability on
dialysis days. During HD, both metabolic waste products as well as circulating amino acids are able
to diffuse through the semipermeable dialysis membrane [11]. The diffusion into the dialysate results
in a considerable extraction of circulating amino acids throughout HD [30,53–56]. We have recently
shown that during a single HD session, ~12 g amino acids are extracted from the circulation in CHD
patients who ingest their habitual diet during HD [57]. This amount equals the quantity of amino
acids that is released into the circulation following ingestion of a typical meal (containing 20–25 g
protein). Loss of circulating amino acids causes a significant decline of plasma amino acid concentrations
throughout HD [55,57]. Moreover, Ikizler et al. showed that in fasting CHD patients, plasma amino acid
concentrations remain low for at least 2 h after cessation of HD [30]. The HD-induced decline in plasma
amino acid concentrations has been shown to cause substantial catabolism of skeletal muscle tissue in
fasted CHD patients [58,59]. The continuous extraction of amino acids throughout HD stimulates skeletal
muscle tissue to release amino acids into the circulation [60,61]. This homeostatic process attenuates
the decline in plasma amino acid concentrations and may prevent subsequent detrimental effects on
organs that are necessary to sustain life [62]. In addition, the decline in plasma amino acid concentrations
reduces the availability of precursors for de novo synthesis of muscle proteins during and following HD.
To allow a muscle protein synthetic response during this period, the extraction of circulating amino acids
should be compensated for through amino acid and/or protein administration.

Provision of protein-rich nutrition during HD is often recommended to increase dietary protein
intake on dialysis days [63–66]. Ingestion of 40–60 g protein has been shown to prevent the HD-induced
decline in plasma amino acid concentrations in multiple studies [58,59,67,68]. Furthermore, Pupim et al.
demonstrated that ingestion of 57 g protein resulted in a positive forearm amino acid balance throughout
HD [58]. Thus, HD-associated skeletal muscle catabolism may be prevented through ingestion of
sufficient protein during HD. Several studies have also observed long-term beneficial effects of protein
supplementation during HD, such as an increase in lean body mass, improvement in physical function,
and decrease in mortality [69–71]. However, data from our lab [57] and others [56,67] indicate that
protein ingestion during HD is also accompanied by an increase in amino acid extraction, presumably
due to a higher subsequent plasma-dialysate diffusion gradient (Figure 1). Due to this extraction
following protein ingestion during HD, less amino acids become available to stimulate muscle protein
synthesis rates and serve as precursors for de novo synthesis of muscle protein. Considering the
anabolic resistance of skeletal muscle tissue that is also present in this population, CHD patients will
need to ingest well above 20 g high-quality protein during HD to allow a post-prandial increase in
skeletal muscle protein synthesis and an inhibition of proteolysis.
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Figure 1. Conceptual overview of the effects of hemodialysis, protein ingestion, and physical activity on 
the muscle protein synthetic and proteolytic response. The extraction of amino acids during hemodialysis 
(HD) stimulates muscle protein breakdown (MPB) rates due to decreased plasma amino acid 
concentrations. Protein ingestion can maintain, or even increase, plasma amino acid concentrations 
throughout HD, which increases muscle protein synthesis (MPS) rates, while it may attenuate the HD‐
induced increase in MPB rates. However, elevated plasma amino acid concentrations also increase the 
amount of amino acids that are extracted during HD. Physical activity before or during HD may increase 
the use of plasma amino acids for de novo MPS, and thereby reduce the amount of amino acids that are 
extracted from the circulation during HD. Dashed lines in green represent processes that support muscle 
maintenance, whereas dashed lines in red represent processes that compromise muscle maintenance. 

However, high quality (animal‐derived) protein is rich in phosphorous [72]. In CHD patients, an 
increased dietary protein intake may lead to hyperphosphatemia or the need for phosphate binders. 
Furthermore, it has been suggested that an increased dietary protein intake in CHD patients provides 
more uremic toxin precursors and leads to higher uremic solute concentrations between HD sessions 
[73]. Recently, our laboratory has shown that the ingestion of branched‐chain ketoacids, which contain 
no phosphorous or nitrogen, significantly stimulates skeletal muscle protein synthesis rates in healthy 
elderly individuals [74]. Ketoacid supplementation in CKD patients has been shown to reduce the 
generation of toxic metabolic waste products, while maintaining a good nutritional status [75]. However, 
it remains to be established whether ketoacid supplementation could support muscle maintenance in 
CHD patients. 

4. Physical Activity in ESRD Patients on HD 

Another key component for muscle maintenance is physical activity. Physical activity and exercise 
stimulate skeletal muscle protein synthesis rates, with post‐absorptive muscle protein synthesis rates 
being elevated for up to 24 or even 48 h [76,77]. Furthermore, physical activity performed prior to food 
intake augments the post‐prandial muscle protein synthetic response to feeding [78–81]. In contrast, a 

Figure 1. Conceptual overview of the effects of hemodialysis, protein ingestion, and physical activity
on the muscle protein synthetic and proteolytic response. The extraction of amino acids during
hemodialysis (HD) stimulates muscle protein breakdown (MPB) rates due to decreased plasma amino
acid concentrations. Protein ingestion can maintain, or even increase, plasma amino acid concentrations
throughout HD, which increases muscle protein synthesis (MPS) rates, while it may attenuate the
HD-induced increase in MPB rates. However, elevated plasma amino acid concentrations also increase
the amount of amino acids that are extracted during HD. Physical activity before or during HD may
increase the use of plasma amino acids for de novo MPS, and thereby reduce the amount of amino
acids that are extracted from the circulation during HD. Dashed lines in green represent processes
that support muscle maintenance, whereas dashed lines in red represent processes that compromise
muscle maintenance.

However, high quality (animal-derived) protein is rich in phosphorous [72]. In CHD patients,
an increased dietary protein intake may lead to hyperphosphatemia or the need for phosphate
binders. Furthermore, it has been suggested that an increased dietary protein intake in CHD patients
provides more uremic toxin precursors and leads to higher uremic solute concentrations between
HD sessions [73]. Recently, our laboratory has shown that the ingestion of branched-chain ketoacids,
which contain no phosphorous or nitrogen, significantly stimulates skeletal muscle protein synthesis
rates in healthy elderly individuals [74]. Ketoacid supplementation in CKD patients has been shown
to reduce the generation of toxic metabolic waste products, while maintaining a good nutritional
status [75]. However, it remains to be established whether ketoacid supplementation could support
muscle maintenance in CHD patients.

4. Physical Activity in ESRD Patients on HD

Another key component for muscle maintenance is physical activity. Physical activity and exercise
stimulate skeletal muscle protein synthesis rates, with post-absorptive muscle protein synthesis rates



Nutrients 2019, 11, 2972 5 of 13

being elevated for up to 24 or even 48 h [76,77]. Furthermore, physical activity performed prior to food
intake augments the post-prandial muscle protein synthetic response to feeding [78–81]. In contrast,
a decline in physical activity reduces the muscle protein synthetic response to feeding [82–84].
In other words, whereas physical activity makes skeletal muscle tissue more sensitive to the anabolic
properties of amino acids, muscle disuse leads to anabolic resistance of skeletal muscle tissue [85].
In support, daily exercise has been shown to increase skeletal muscle protein synthesis rates throughout
the day [86], while a decline in physical activity has been shown to lower daily muscle protein synthesis
rates [87]. Consequently, ample physical activity has been associated with a reduced age-related loss of
muscle mass and strength [88,89], whereas a decline in the level of physical activity (e.g., during bed rest
or limb immobilization) has been shown to induce a rapid decline in muscle mass and strength [90,91].

According to the Physical Activity Guidelines for Americans, patients with chronic diseases should
follow the key physical activity guidelines for healthy adults to achieve substantial health benefits [92].
These guidelines recommend patients to perform at least 150–300 min per week of moderate-intensity
aerobic exercise, 75–150 min of vigorous-intensity aerobic exercise per week, or an equivalent combination
of both. In addition, muscle-strengthening activities that involve all major muscle groups should be
performed at least twice per week. However, these guidelines do not contain specific recommendations
for CHD patients. The Renal Association Clinical Practice Guideline on Hemodialysis recommends that all
CHD patients without contraindication should perform at least 30 min of supervised moderate-intensity
exercise during every dialysis session [93]. In addition, the guideline states that CHD patients should
be encouraged to undertake physical activity on non-dialysis days. In line with this recommendation,
it has recently been suggested that mortality rates are reduced in CHD patients who perform at least
4000 steps on non-dialysis days [94].

However, CHD patients typically adopt a sedentary lifestyle and spend less time being physically
active than healthy adults [95,96]. In the United States, almost 50% of CHD patients perform exercise
once or less than once per week [96]. A HD session represents a long (3–4 h) sedentary period, which
often hinders CHD patients to engage in physical activity and, as such, dialysis treatments contribute
to the lower physical activity levels [97,98]. Gomes et al. observed that CHD patients took 4362 ± 2084
and 7007 ± 3437 steps on dialysis and non-dialysis days, respectively, compared to 8792 ± 2870 steps
taken by age-matched healthy controls [98]. The low habitual physical activity level in these patients is
another key factor responsible for the accelerated loss of muscle mass and strength in CHD patients [17].
Interventions in CHD patients targeted to preserve or even increase muscle mass should not only
provide nutritional support but also increase physical activity levels to maximize their impact.

5. Interventions to Support Muscle Maintenance in ESRD Patients on HD

Physical activity interventions for CHD patients may implement exercise during HD (intradialytic) or
between HD sessions (interdialytic). A recent meta-analysis by Clarckson et al. reported no differences
in the efficacy of intradialytic when compared with interdialytic exercise on improvements of physical
function in CHD patients [99]. Due to exercise intolerance, CHD patients typically show low adherence and
poor compliance to long-term unsupervised physical activity intervention programs [100]. HD sessions
represent an opportunity to integrate supervised physical activity in the weekly routine of CHD patients.
Intradialytic physical activity is considered safe and shows greater adherence rates than interdialytic
physical activity [100–102]. Furthermore, supervision of intradialytic exercise sessions provides the
opportunity to prescribe a patient-specific and progressive exercise program. Physical activity during
HD has some limitations compared to interdialytic physical activity, such as constrains regarding exercise
intensity and upper limb exercises. On the other hand, intradialytic physical activity provides distraction for
CHD patients during their treatment and has been shown to improve their quality of life [101]. Therefore,
we would advocate the implementation of an intradialytic exercise program in lifestyle interventions
designed for (sedentary) CHD patients.

In addition to timing, the type of exercise is an important determinant of its potential to support
muscle maintenance. Resistance-type exercise training is considered most potent to augment muscle
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mass and strength. In healthy adults, resistance-type exercise training has been shown to induce a robust
increase in both skeletal muscle mass as well as strength [103–105]. Furthermore, resistance-type
exercise also sensitizes skeletal muscle tissue to the anabolic properties of amino acids and, as such,
increases the post-prandial muscle protein synthetic response to feeding [78,79,81]. In support, it has
been reported that a single bout of resistance-type exercise performed prior to HD increases amino acid
uptake by muscle tissue following intradialytic protein ingestion [106]. Intradialytic resistance-type
exercise programs have shown to increase skeletal muscle strength, thereby improving physical
function outcome measures such as the 6-min walk test [99,107–110]. In a systematic review of nine
trials that assessed progressive resistance-type exercise training in ESRD patients on HD, Chan and
Cheema concluded that resistance-type exercise training can effectively induce regional skeletal muscle
hypertrophy [111]. However, due to inconsistent results of previous studies [69,112–118], it remains
unclear whether resistance-type exercise can increase skeletal muscle mass on a whole-body level in
CHD patients.

Protein ingestion during recovery from resistance-type exercise is required to achieve a positive
net protein balance and, as such, to allow net muscle protein accretion [76]. Due to practical matters,
the majority of studies that assessed the impact of resistance-type exercise training in CHD patients
implemented their training sessions before or during HD [119]. As circulating amino acids are extracted
during HD, recovery from those exercise sessions typically occurred during conditions of reduced
amino acid availability. This may have attenuated the anabolic effects of the exercise training programs.
Furthermore, the combination of amino acid extraction during HD and the anabolic resistance of
skeletal muscle tissue in CHD patients likely increases the amount of protein that is required following
intradialytic resistance-type exercise. We suggest that at least 30 g protein should be provided to CHD
patients during recovery from resistance-type exercise performed immediately prior or during HD to
allow a muscle protein synthetic response.

Besides protein ingestion during recovery from exercise, it has been advocated that every main
meal (breakfast, lunch, and dinner) should contain 20 g high-quality protein to optimally stimulate
muscle protein synthesis rates throughout the day [120,121]. We suggest that CHD patients should
ingest well above 20 g high-quality protein per main meal to compensate for the blunted muscle protein
synthetic response to feeding, recognizing that additional measures to prevent hyperphosphatemia
might be necessary. In addition, ingesting a protein-rich snack prior to sleep, especially on training days,
may further support muscle mass maintenance [24]. Though the impact of these nutritional strategies
has not been assessed in CHD patients, they would likely be supplemental in the prevention of protein
malnutrition in this population. Effectiveness of any nutritional intervention largely depends on
long-term adherence and compliance. However, adherence to dietary interventions in CHD patients is
often poor due to barriers such as dialysis time, motivation, and lack of social support [122]. Therefore,
CHD patients should be advised on protein options that are easy to prepare, convenient to consume,
and have an acceptable taste.

A well-orchestrated lifestyle intervention program combining exercise and nutritional
interventions for CHD patients is required to attenuate or even prevent the loss of muscle mass,
strength, and functional capacity in this population. For such a multimodal interventional approach
to be effective, a (more) personalized supervision of CHD patients provided by a team of healthcare
specialists with physical activity and nutritional expertise is required. A close collaboration between
nephrologists, physical therapists, and dietitians in both research and clinical care will be essential to
improve the health and well-being of the growing number of CHD patients.

6. Conclusions

The gradual loss of skeletal muscle mass in CHD patients accelerates after initiation of intermittent
HD treatment. Muscle protein breakdown rates in CHD patients are increased, while muscle protein
synthesis rates fail to match this increase due to insufficient protein ingestion, amino acid extraction
during HD, and the prevalence of anabolic resistance. Protein intake of CHD patients should be increased
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on dialysis days to compensate for extraction of circulating amino acids during HD and to compensate
for the blunted muscle protein synthetic response to feeding in these patients. Implementing structured
physical activity in the daily routine of CHD patients represents a feasible strategy to increase the skeletal
muscle protein synthetic response to protein ingestion and, as such, to alleviate anabolic resistance.
More insight in the impact of protein ingestion and exercise in CHD patients on both dialysis as well as
non-dialysis days is required to develop more effective nutritional and exercise intervention programs
that can attenuate or even prevent muscle loss in CHD patients.
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