35 research outputs found

    Scientific value of systematic reviews: survey of editors of core clinical journals.

    Get PDF
    BACKGROUND: Synthesizing research evidence using systematic and rigorous methods has become a key feature of evidence-based medicine and knowledge translation. Systematic reviews (SRs) may or may not include a meta-analysis depending on the suitability of available data. They are often being criticised as 'secondary research' and denied the status of original research. Scientific journals play an important role in the publication process. How they appraise a given type of research influences the status of that research in the scientific community. We investigated the attitudes of editors of core clinical journals towards SRs and their value for publication.¦METHODS: We identified the 118 journals labelled as "core clinical journals" by the National Library of Medicine, USA in April 2009. The journals' editors were surveyed by email in 2009 and asked whether they considered SRs as original research projects; whether they published SRs; and for which section of the journal they would consider a SR manuscript.¦RESULTS: The editors of 65 journals (55%) responded. Most respondents considered SRs to be original research (71%) and almost all journals (93%) published SRs. Several editors regarded the use of Cochrane methodology or a meta-analysis as quality criteria; for some respondents these criteria were premises for the consideration of SRs as original research. Journals placed SRs in various sections such as "Review" or "Feature article". Characterization of non-responding journals showed that about two thirds do publish systematic reviews.¦DISCUSSION: Currently, the editors of most core clinical journals consider SRs original research. Our findings are limited by a non-responder rate of 45%. Individual comments suggest that this is a grey area and attitudes differ widely. A debate about the definition of 'original research' in the context of SRs is warranted

    Degradation of D-2-hydroxyglutarate in the presence of isocitrate dehydrogenase mutations

    Get PDF
    D-2-Hydroxyglutarate (D-2-HG) is regarded as an oncometabolite. It is found at elevated levels in certain malignancies such as acute myeloid leukaemia and glioma. It is produced by a mutated isocitrate dehydrogenase IDH1/2, a low-affinity/high-capacity enzyme. Its degradation, in contrast, is catalysed by the high-affinity/low-capacity enzyme D-2-hydroxyglutarate dehydrogenase (D2HDH). So far, it has not been proven experimentally that the accumulation of D-2-HG in IDH mutant cells is the result of its insufficient degradation by D2HDH. Therefore, we developed an LC-MS/MS-based enzyme activity assay that measures the temporal drop in substrate and compared this to the expression of D2HDH protein as measured by Western blot. Our data clearly indicate, that the maximum D-2-HG degradation rate by D2HDH is reached in vivo, as v(max) is low in comparison to production of D-2-HG by mutant IDH1/2. The latter seems to be limited only by substrate availability. Further, incubation of IDH wild type cells for up to 48 hours with 5 mM D-2-HG did not result in a significant increase in either D2HDH protein abundance or enzyme activity

    Interruption of bile acid uptake by hepatocytes after acetaminophen overdose ameliorates hepatotoxicity.

    Get PDF
    Background & aimsAcetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity.MethodsWe performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes.ResultsPrior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity.ConclusionsAPAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication.Lay summaryOnly one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Dopamine receptor 1 expressing B cells exert a proinflammatory role in female patients with rheumatoid arthritis

    No full text
    Rheumatoid arthritis (RA) is a chronic rheumatic disease with a clear sex-bias. Recent data indicated a role for dopamine in RA pathogenesis, while dopaminergic pathways can be modulated by estrogens. As defined mechanism of action of dopamine on B cell function in RA are unclear, we aimed to elucidate this, with special focus on sex-differences. Healthy controls (HC, n = 64) and RA patients (n = 61) were recruited. Expression of D1–D5 dopamine receptors (DRs) was investigated by flow cytometry on peripheral blood mononuclear cells (PBMCs). D1-like DRs were stimulated in vitro to assess effects on B cell activation and proliferation. Secretion of cytokines and dopamine content were measured by ELISA. All DRs were expressed on PBMCs of HC and RA patients. Dopamine content in PBMCs, and frequency of D1DR expressing B cells were significantly higher in RA females (p < 0.001). Expression of D1DR on RA B cells correlated positively with disease duration and severity only in women. Combined B cell and D1-like DR stimulation induced higher IL-8 and CCL-3 secretion from PBMCs of female RA patients compared to HC. These results indicate sex-specific differences in dopaminergic pathway in RA, with a proinflammatory feature of the D1DR pathway in women

    Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain

    No full text
    Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation

    Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure

    Full text link
    Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis

    Programming of Shape Memory Natural Rubber for Near-Discrete Shape Transitions

    No full text
    Typical shape memory polymers are hot-programmed and show a shape transition over a broad temperature range of 10 K and more. Cold-programmed shape memory natural rubber (SMNR) recovers more than 80% of its original shape within 1 K. The trigger point can be increased upon aging the stretched SMNR over several weeks without losing the narrow trigger range. This process can be accelerated by treatment of the stretched SMNR with nonaffine solvent vapors. Affine solvent vapors of low concentrations afford higher trigger points than that achieved by aging. This way, even higher cross-linked natural rubber can be cold-programmed
    corecore