12 research outputs found

    BurstCube: A CubeSat for gravitational wave counterparts

    Get PDF
    BurstCube aims to expand sky coverage in order to detect, localize, and rapidly disseminate information about gamma-ray bursts (GRBs). BurstCube is a\u276U\u27 CubeSat with an instrument comprised of 4 Cesium Iodide (CsI) scintillators coupled to arrays of Silicon photo-multipliers (SiPMs) and will be sensitive to gamma-rays between 50 keV and 1 MeV. BurstCube will assist current observatories, such as Swift and Fermi, in the detection of GRBs as well as provide astronomical context to gravitational wave (GW) events detected by LIGO, Virgo, and KAGRA. BurstCube is currently in its development phase with a launch readiness date in early 2022

    The Compton Spectrometer and Imager

    Full text link
    The Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements. Science goals for COSI include studies of 0.511 MeV emission from antimatter annihilation in the Galaxy, mapping radioactive elements from nucleosynthesis, determining emission mechanisms and source geometries with polarization measurements, and detecting and localizing multimessenger sources. The instantaneous field of view for the germanium detectors is >25% of the sky, and they are surrounded on the sides and bottom by active shields, providing background rejection as well as allowing for detection of gamma-ray bursts and other gamma-ray flares over most of the sky. In the following, we provide an overview of the COSI mission, including the science, the technical design, and the project status.Comment: 8 page

    The cosipy library: COSI's high-level analysis software

    Full text link
    The Compton Spectrometer and Imager (COSI) is a selected Small Explorer (SMEX) mission launching in 2027. It consists of a large field-of-view Compton telescope that will probe with increased sensitivity the under-explored MeV gamma-ray sky (0.2-5 MeV). We will present the current status of cosipy, a Python library that will perform spectral and polarization fits, image deconvolution, and all high-level analysis tasks required by COSI's broad science goals: uncovering the origin of the Galactic positrons, mapping the sites of Galactic nucleosynthesis, improving our models of the jet and emission mechanism of gamma-ray bursts (GRBs) and active galactic nuclei (AGNs), and detecting and localizing gravitational wave and neutrino sources. The cosipy library builds on the experience gained during the COSI balloon campaigns and will bring the analysis of data in the Compton regime to a modern open-source likelihood-based code, capable of performing coherent joint fits with other instruments using the Multi-Mission Maximum Likelihood framework (3ML). In this contribution, we will also discuss our plans to receive feedback from the community by having yearly software releases accompanied by publicly-available data challenges

    Multiresolution HEALPix Maps for Multiwavelength and Multimessenger Astronomy

    No full text
    HEALPix—the Hierarchical Equal Area isoLatitude Pixelization—has become a standard in high-energy and gravitational wave astronomy. Originally developed to improve the efficiency of all-sky Fourier analyses, it is now also utilized to share sky localization information. When used for this purpose the need for a homogeneous all-sky grid represents a limitation that hinders a broader community adoption. This work presents mhealpy, a Python library able to create, handle and analyze multiresolution maps, a solution to this problem. It supports efficient pixel querying, arithmetic operations between maps, adaptive mesh refinement, plotting, and serialization into FITS—Flexible Image Transport System—files. This HEALPix extension makes it suitable to represent highly resolved region, resulting in a convenient common format to share spatial information for joint multiwavelength and multimessenger analyses

    X-ray measurement of a high-mass white dwarf and its spin for the intermediate polar IGR J18434-0508

    No full text
    International audienceIGR J18434-0508 is a Galactic Intermediate Polar (IP) type Cataclysmic Variable (CV) previously classified through optical spectroscopy. The source is already known to have a hard Chandra spectrum. In this paper, we have used follow-up XMM-Newton and NuSTAR observations to measure the white dwarf (WD) mass and spin period. We measure a spin period of P = 304.4 +/- 0.3 s based on the combined MOS1, MOS2, and pn light curve. Although this is twice the optical period found previously, we interpret this value to be the true spin period of the WD. The source has an 8 +/- 2% pulsed fraction in the 0.5-10 keV XMM-Newton data and shows strong dips in the soft energy band (0.5-2 keV). The XMM-Newton and NuSTAR joint spectrum is consistent with a thermal bremsstrahlung continuum model with an additional partial covering factor, reflection, and Fe line Gaussian components. Furthermore, we fit the joint spectrum with the post-shock region "ipolar" model which indicates a high WD mass >> ∼\sim 1.36 Msun, approaching the Chandrasekhar limit

    Classifying IGR J15038−6021 as a magnetic CV with a massive white dwarf

    No full text
    International audienceCataclysmic variables (CVs) are binary systems consisting of a white dwarf (WD) accreting matter from a companion star. Observations of CVs provide an opportunity to learn about accretion discs, the physics of compact objects, classical novae, and the evolution of the binary and the WD that may ultimately end in a Type Ia supernova (SN). As Type Ia SNe involve a WD reaching the Chandrasekhar limit or merging WDs, WD mass measurements are particularly important for elucidating the path from CV to Type Ia SN. For intermediate polar (IP) type CVs, the WD mass is related to the bremsstrahlung temperature of material in the accretion column, which typically peaks at X-ray energies. Thus, the IPs with the strongest hard X-ray emission, such as those discovered by the INTEGRAL satellite, are expected to have the highest masses. Here, we report on XMM–Newton, Nuclear Spectroscopic Telescope Array (NuSTAR), and optical observations of IGR J15038−6021. We find an X-ray periodicity of 1678 ± 2 s, which we interpret as the WD spin period. From fitting the 0.3–79 keV spectrum with a model that uses the relationship between the WD mass and the post-shock temperature, we measure a WD mass of |1.36−0.11+0.041.36^{+0.04}_{-0.11}| M_⊙. This follows an earlier study of IGR J14091−6108, which also has a WD with a mass approaching the Chandrasekhar limit. We demonstrate that these are both outliers among IPs in having massive WDs and discuss the results in the context of WD mass studies as well as the implications for WD mass evolution

    Gamma-ray Transient Network Science Analysis Group Report

    No full text
    International audienceThe Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to Discovery in Astronomy and Astrophysics for the 2020s, this Gamma-ray Transient Network Science Analysis Group was tasked to understand the role of the IPN and high-energy monitors in this new era. The charge includes describing the science made possible with these facilities, tracing the corresponding requirements and capabilities, and highlighting where improved operations of existing instruments and the IPN would enhance TDAMM science. While this study considers the full multiwavelength and multimessenger context, the findings are specific to space-based high-energy monitors. These facilities are important both for full characterization of these transients as well as facilitating follow-up observations through discovery and localization. The full document reports a brief history of this field, followed by our detailed analyses and findings in some 68 pages, providing a holistic overview of the role of the IPN and high-energy monitors in the coming decades

    Gamma-ray Transient Network Science Analysis Group Report

    No full text
    International audienceThe Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to Discovery in Astronomy and Astrophysics for the 2020s, this Gamma-ray Transient Network Science Analysis Group was tasked to understand the role of the IPN and high-energy monitors in this new era. The charge includes describing the science made possible with these facilities, tracing the corresponding requirements and capabilities, and highlighting where improved operations of existing instruments and the IPN would enhance TDAMM science. While this study considers the full multiwavelength and multimessenger context, the findings are specific to space-based high-energy monitors. These facilities are important both for full characterization of these transients as well as facilitating follow-up observations through discovery and localization. The full document reports a brief history of this field, followed by our detailed analyses and findings in some 68 pages, providing a holistic overview of the role of the IPN and high-energy monitors in the coming decades

    The Compton Spectrometer and Imager

    No full text
    International audienceThe Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements. Science goals for COSI include studies of 0.511 MeV emission from antimatter annihilation in the Galaxy, mapping radioactive elements from nucleosynthesis, determining emission mechanisms and source geometries with polarization measurements, and detecting and localizing multimessenger sources. The instantaneous field of view for the germanium detectors is >25% of the sky, and they are surrounded on the sides and bottom by active shields, providing background rejection as well as allowing for detection of gamma-ray bursts and other gamma-ray flares over most of the sky. In the following, we provide an overview of the COSI mission, including the science, the technical design, and the project status
    corecore