12 research outputs found
Lasting Antibody Responses Are Mediated by a Combination of Newly Formed and Established Bone Marrow Plasma Cells Drawn from Clonally Distinct Precursors
WOS: 000345023400026PubMed ID: 25326027Current models hold that serum Ab titers are maintained chiefly by long-lived bone marrow (BM) plasma cells (PCs). In this study, we characterize the role of subpopulations of BM PCs in long-term humoral responses to T cell-dependent Ag. Surprisingly, our results indicate that 40-50% of BM PCs are recently formed cells, defined, in part, by rapid steady-state turnover kinetics and secretion of low-affinity IgM Abs. Further, for months after immunization with a hapten-protein conjugate, newly formed Ag-induced, IgM-secreting BM PCs were detected in parallel with longer-lived IgG-secreting cells, suggesting ongoing and parallel input to the BM PC pool from two distinct pools of activated B cells. Consistent with this interpretation, IgM and IgG Abs secreted by cells within distinct PC subsets exhibited distinct L chain usage. We conclude that long-term Ab responses are maintained by a dynamic BM PC pool composed of both recently formed and long-lived PCs drawn from clonally disparate precursors.National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01AI097590, F30HL112628, T32CA009140, T32 AI070099]This work was supported by National Institutes of Health Grants R01AI097590 (to DA.), F30HL112628 (to I.C.), T32CA009140 (to D.D.J.), and T32 AI070099 (to A.B.)
Switched and unswitched memory B cells detected during SARS-CoV-2 convalescence correlate with limited symptom duration.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study. We observed a significant negative correlation between the frequency of peripheral blood memory B cells and the duration of symptoms for convalescent subjects. Memory B cell subsets in convalescent subjects were composed of classical CD24+ class-switched memory B cells, but also activated CD24-negative and natural unswitched CD27+ IgD+ IgM+ subsets. Memory B cell frequency was significantly correlated with both IgG1 and IgM responses to the SARS-CoV-2 spike protein receptor binding domain (RBD) in most seropositive subjects. IgM+ memory, but not switched memory, directly correlated with virus-specific antibody responses, and remained stable over 3 months. Our findings suggest that the frequency of memory B cells is a critical indicator of disease resolution, and that IgM+ memory B cells may play an important role in SARS-CoV-2 immunity
Induction of IL-33 expression and activity in central nervous system glia
IL-33 is a novel member of the IL-1 cytokine family and a potent inducer of type 2 immunity, as mast cells and Th2 CD4+ T cells respond to IL-33 with the induction of type 2 cytokines such as IL-13. IL-33 mRNA levels are extremely high in the CNS, and CNS glia possess both subunits of the IL-33R, yet whether IL-33 is produced by and affects CNS glia has not been studied. Here, we demonstrate that pathogen-associated molecular patterns (PAMPs) significantly increase IL-33 mRNA and protein expression in CNS glia. Interestingly, IL-33 was localized to the nucleus of astrocytes. Further, CNS glial and astrocyte-enriched cultures treated with a PAMP followed by an ATP pulse had significantly higher levels of supernatant IL-1β and IL-33 than cultures receiving any single treatment (PAMP or ATP). Supernatants from PAMP + ATP-treated glia induced the secretion of IL-6, IL-13, and MCP-1 from the MC/9 mast cell line in a manner similar to exogenous recombinant IL-33. Further, IL-33 levels and activity were increased in the brains of mice infected with the neurotropic virus Theiler’s murine encephalomyelitis virus. IL-33 also had direct effects on CNS glia, as IL-33 induced various innate immune effectors in CNS glia, and this induction was greatly amplified by IL-33-stimulated mast cells. In conclusion, these results implicate IL-33-producing astrocytes as a potentially critical regulator of innate immune responses in the CNS