12,760 research outputs found

    Magnetoelectric polarizability and axion electrodynamics in crystalline insulators

    Full text link
    The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magnetoelectric coupling θ\theta, a fact we derive for the single-particle case using a recent theory of polarization in weakly inhomogeneous materials. This polarizability θ\theta is the same parameter that appears in the "axion electrodynamics" Lagrangian ΔLEM=(θe2/2πh)E⋅B\Delta{\cal L}_{EM} = (\theta e^2 / 2 \pi h) {\bf E} \cdot {\bf B}, which is known to describe the unusual magnetoelectric properties of the three-dimensional topological insulator (θ=π\theta=\pi). We compute θ\theta for a simple model that accesses the topological insulator and discuss its connection to the surface Hall conductivity. The orbital magnetoelectric polarizability can be generalized to the many-particle wavefunction and defines the 3D topological insulator, like the IQHE, in terms of a topological ground-state response function.Comment: 4 pages; minor changes resulting from a change in one referenc

    Slow light in molecular aggregates nanofilms

    Get PDF
    We study slow light performance of molecular aggregates arranged in nanofilms by means of coherent population oscillations (CPO). The molecular cooperative behavior inside the aggregate enhances the delay of input signals in the GHz range in comparison with other CPO-based devices. Moreover, the problem of residual absorption present in CPO processes, is removed. We also propose an optical switch between different delays by exploiting the optical bistability of these aggregates.Comment: 4 pages, 4 figure

    Magnetic phase diagram of a spin-1 condensate in two dimensions with dipole interaction

    Full text link
    Several new features arise in the ground-state phase diagram of a spin-1 condensate trapped in an optical trap when the magnetic dipole interaction between the atoms is taken into account along with confinement and spin precession. The boundaries between the regions of ferromagnetic and polar phases move as the dipole strength is varied and the ferromagnetic phases can be modulated. The magnetization of the ferromagnetic phase perpendicular to the field becomes modulated as a helix winding around the magnetic field direction, with a wavelength inversely proportional to the dipole strength. This modulation should be observable for current experimental parameters in 87^{87}Rb. Hence the much-sought supersolid state, with broken continuous translation invariance in one direction and broken global U(1) invariance, occurs generically as a metastable state in this system as a result of dipole interaction. The ferromagnetic state parallel to the applied magnetic field becomes striped in a finite system at strong dipolar coupling.Comment: 11 pages, 7 figures;published versio

    Bulk fields in AdS_5 from probe D7 branes

    Get PDF
    We relate bulk fields in Randall-Sundrum AdS_5 phenomenological models to the world-volume fields of probe D7 branes in the Klebanov-Witten background of type IIB string theory. The string constructions are described by AdS_5 X T^{1,1} in their near-horizon geometry, with T^{1,1} a 5d compact internal manifold that yields N=1 supersymmetry in the dual 4d gauge theory. The effective 5d Lagrangian description derived from the explicit string construction leads to additional features that are not usually encountered in phenomenological model building.Comment: 23 pages, 4 figures; v2: references added; v3: equations simplified, typos correcte
    • …
    corecore