311 research outputs found

    Exact quantum quasiclassical, and semiclassical reaction probabilities for the collinear F+D_2 → FD+D reaction

    Get PDF
    Exact quantum, quasiclassical, and semiclassical reaction probabilities and rate constants for the collinear reaction F+D_2 → FD+D are presented. In all calculations, a high degree of population inversion is predicted with P^R_(03) and P^R(04) being the dominant reaction probabilities. In analogy with the F+H_2 reaction (preceding paper), the exact quantum 0→3 and 0→4 probabilities show markedly different energy dependence with PR03 having a much smaller effective threshold energy (E_T=0.014 eV) than P^R_(04) (0.055 eV). The corresponding quasiclassical forward probabilities P^R_(03) and P^R_(04) are in poor agreement with the exact quantum ones, while their quasiclassical reverse and semiclassical counterparts provide much better approximations to the exact results. Similar comparisons are also made in the analysis of the corresponding EQ, QCF, QCR, and USC rate constants. An information theoretic analysis of the EQ and QCF reaction probabilities indicates nonlinear surprisal behavior as well as a significant isotope dependence. Additional quantum results at higher energies are presented and discussed in terms of threshold behavior and resonances. Exact quantum reaction probabilities for the related F+HD → FH+D and F+DH → FD+H reactions are given and an attempt to explain the observed isotope effects is made

    Large quantum effects in the collinear F+H2-->FH+H reaction

    Get PDF
    We have performed accurate quantum mechanical calculations of reaction probabilities for the collinear F+H2-->FH+H reaction as well as corresponding quasiclassical trajectory calculations. A comparison of these results shows that very significant quantum mechanical effects are present in this reaction

    Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+H2 --> FH+H reaction

    Get PDF
    Exact quantum, quasiclassical, and semiclassical reaction probabilities and rate constants for the collinear reaction F+H2 --> FH+H are presented and compared. The exact quantum results indicate a large degree of population inversion of the FH product with PR02 and PR03 being the dominant reaction probabilities. The energy dependence of these two probabilities at low translational energies are quite different. PR02 shows an effective threshold of 0.005 eV which can largely be interpreted as resulting from tunneling through a vibrationally adiabatic barrier. PR03 has a much larger effective threshold (0.045 eV) apparently resulting from dynamical effects. Quasiclassical probabilities for the collinear F+H2 reaction were calculated by both the forward (initial conditions chosen for reagent F+H2) and reverse (initial conditions for product H+FH) trajectory methods. The results of both calculations correctly indicate that PR03 and PR02 should be the dominant reaction probabilities. However, the threshold behavior of the quasiclassical forward PR03 disagrees strongly with the corresponding exact quantum threshold energy dependence. By contrast, there is good agreement between the reversed trajectory results and the exact quantum ones. The uniform semiclassical results also agree well with the corresponding exact quantum ones indicating that the quasiclassical reverse and the semiclassical methods are preferable to the quasiclassical forward method for this reaction. The important differences between the threshold behavior of the exact quantum and quasiclassical forward reaction probabilities are manifested in the corresponding rate constants primarily as large differences in their activation energies. Additional exact quantum results at higher total energies indicate that threshold effects are no longer important for reactions with vibrationally excited H2. Resonances play an important role in certain reaction probabilities primarily at higher relative translational energies

    Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H 7 + cluster

    Get PDF
    Full-dimensional ab initio potential energy surface is constructed for the H7+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm -1 for the entire data set. The surface dissociates correctly to the H5+ H 2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H7+ cluster for carrying out dynamics studies. © 2012 American Institute of Physics.. R.P. acknowledges financial support by Ministerio de Ciencia e Innovacion, Spain, Grant No. FIS2010-18132, FIS2011-29596-C02-01 and European Cooperation in Scientific and Technical Research (COST) Action CM1002 (CODECS). P.B. acknowledges a postdoctoral fellowship from the Ramón Areces Foundation, Spain. J.M.B. and Y.W. thank the National Science Foundation (CHE-1145227) for financial support.Peer Reviewe

    Anharmonic Rovibrational Calculations of Singlet Cyclic C4 Using a New Ab Initio Potential and a Quartic Force

    Get PDF
    We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp 1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations
    corecore