1,994 research outputs found

    Extragalactic Background Light and Gamma-Ray Attenuation

    Full text link
    Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. We present EBL calculations both based on multiwavelength observations of thousands of galaxies and also based on semi-analytic models, and show that they are consistent with these lower limits from observed galaxies and with the gamma-ray upper limit constraints. Such comparisons "close the loop" on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. We compare our results with those of other recent works, and discuss the implications of these new EBL calculations for gamma ray attenuation. Catching a few GRBs with groundbased atmospheric Cherenkov Telescope (ACT) arrays or water Cherenkov detectors could provide important new constraints on the high-redshift star formation history of the universe.Comment: 12 pages, 8 multi-panel figures, Invited talk at the 25th Texas Symposium on Relativistic Astrophysics, Heidelberg December 6-10, 201

    Catching GRBs with atmospheric Cherenkov telescopes

    Full text link
    Fermi has shown GRBs to be a source of >10 GeV photons. We present an estimate of the detection rate of GRBs with a next generation Cherenkov telescope. Our predictions are based on the observed properties of GRBs detected by Fermi, combined with the spectral properties and redshift determinations for the bursts population by instruments operating at lower energies. While detection of VHE emission from GRBs has eluded ground-based instruments thus far, our results suggest that ground-based detection may be within reach of the proposed Cherenkov Telescope Array (CTA), albeit with a low rate, 0.25 - 0.5/yr. Such a detection would help constrain the emission mechanism of gamma-ray emission from GRBs. Photons at these energies from distant GRBs are affected by the UV-optical background light, and a ground-based detection could also provide a valuable probe of the Extragalactic Background Light (EBL) in place at high redshift.Comment: 4 pages, 3 figures, to appear in the Proceedings of "Gamma Ray Bursts 2010", held Nov. 1-4, 2010 in Annapolis, M

    A Quantum Yield Map for Synthetic Eumelanin

    Get PDF
    The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the specific quantum yield: the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein.Comment: 10 pages, 6 figure

    Diffuse Extragalactic Background Radiation

    Full text link
    Attenuation of high--energy gamma rays by pair--production with UV, optical and IR background photons provides a link between the history of galaxy formation and high--energy astrophysics. We present results from our latest semi-analytic models (SAMs), based upon a Λ\LambdaCDM hierarchical structural formation scenario and employing all ingredients thought to be important to galaxy formation and evolution, as well as reprocessing of starlight by dust to mid- and far-IR wavelengths. Our models also use results from recent hydrodynamic galaxy merger simulations. These latest SAMs are successful in reproducing a large variety of observational constraints such as number counts, luminosity and mass functions, and color bimodality. We have created 2 models that bracket the likely ranges of galaxy emissivities, and for each of these we show how the optical depth from pair--production is affected by redshift and gamma-ray energy. We conclude with a discussion of the implications of our work, and how the burgeoning science of gamma-ray astronomy will continue to help constrain cosmology.Comment: 12 pages, 8 figures, to be published in the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, held July 2008 in Heidelberg, German

    Modeling Gamma-Ray Attenuation in High-Redshift GeV Spectra

    Full text link
    We present two models for the cosmological UV background light, and calculate the opacity of GeV gamma--rays out to redshift 9. The contributors to the background include 2 possible quasar emissivities, and output from star--forming galaxies as determined by recent a semi--analytic model (SAM) of structure formation. The SAM used in this work is based upon a hierarchical build-up of structure in a Λ\LambdaCDM universe and is highly successful in reproducing a variety of observational parameters. Above 1 Rydberg energy, ionizing radiation is subject to reprocessing by the IGM, which we treat using our radiative transfer code, CUBA. The two models for quasar emissivity differing above z = 2.3 are chosen to match the ionization rates observed using flux decrement analysis and the higher values of the line-of-sight proximity effect. We also investigate the possibility of a flat star formation rate density at z >5>5. We conclude that observations of gamma--rays from 10 to 100 GeV by Fermi (GLAST) and the next generation of ground based experiments should confirm a strongly evolving opacity from 1<1< z <4<4. Observation of attenuation in the spectra of gamma--ray bursts at higher redshift could constrain emission of UV radiation at these early times, either from a flat or increasing star-formation density or an unobserved population of sources.Comment: 4 pages, 7 figures, To be published in the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, held July 2008 in Heidelberg, German

    Quantitative photoluminescence of broad band absorbing melanins: A procedure to correct for inner filter and re-absorption effects

    Full text link
    We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant.Comment: 20 pages, 13 figure
    • …
    corecore